ケプラー問題に対する陽的解法と陰的解法

2体のケプラー問題を数値的に解きます。
ここでは、適切な変換をして求めるのではなく、刻み幅制御されたプログラムで無理やり計算します。

そして、
陽的解法であるルンゲ=クッタ=フェールベルグ法

陰的解法であるルンゲ=クッタ=ガウス=ルジャンドル法
の離心率に対する計算量の違いを調べてみます。

Kepler問題

二次元で二体の問題を考えます。運動方程式は
\(
\begin{align}
\frac{d^2 x}{dt^2}&=-\frac{x}{(x^2+y^2)^{3/2}} \\
\frac{d^2 y}{dt^2}&=-\frac{y}{(x^2+y^2)^{3/2}}
\end{align}
\)
\(t=[0,20],~~x(0)=1-e,~~x'(0)=0,~~y(0)=0,~~y'(0)=\sqrt{\frac{1+e}{1-e}}\)
です。ここで、\(e\)は離心率を表します。

この問題に対する解は良く知られていて、
\(
\displaystyle (x+e)^2+\frac{y^2}{1-e^2}=1
\)

で表され、
\(
0\le e\lt 1
\)

の時、楕円となります。

関数の評価回数の離心率の依存性


楕円の軌道を持つ範囲において、
計算は離心率\(e\)が1に近づくほど難しくなります。
なぜなら、原点付近を通過する際に、質点の導関数の変化が大きくなるからです。

使用したプログラムの説明は
陽的解法はhttps://slpr.sakura.ne.jp/qp/runge-kutta-ex/
陰的解法はhttps://slpr.sakura.ne.jp/qp/irkgl-program/
です。実際のプログラムも置いておきます。

離心率を変化させたときの軌道はこんな感じです。

さて、計算速度の評価ですが、関数が何回評価されたかで比較します。
念の為、陰的解法はLU分解もあるので単純な比較は難しいことを注記しておきます。

図の一番上は関数の評価回数の離心率依存性を表しています。縦軸は評価回数、横軸は\(1-e\)を表します。真ん中の図は一番上と同じですが、軸を対数にとっています。一番下は、\(t=20\)まで計算した時に\(t=0\)の初期エネルギーとの相対誤差\(|(E(t=20)-E(t=0))/E(t=0)|\)を表しています。

特徴的な振る舞いは、離心率に対して陰的解法の評価回数は線形の振る舞い、陽的解法は指数で振る舞っている点です。
これは、質点が原点の近くを通るような問題の際に違いが際立つ事を示しています。
また、エネルギーの保存に関しても陰的解法の方が良いことが分かるでしょう。

一応注意しておきますが、ここでいう陰的解法はルンゲ=クッタ=ガウス=ルジャンドル法の振る舞いです。一般的な陰的解法については話していないことに注意してください。

プログラム


きっかけ

きっかけとしてはtwitterで流れてきまして、やってみよう、と思いました。


コメントを残す

メールアドレスが公開されることはありません。 * が付いている欄は必須項目です