水素原子の解析解1/3 -相対座標と変数分離

ボーアモデルにおける水素原子の解析解、すなわち電子1個(電荷-e)と陽子1個(電荷+e)の系でスピンを無視する場合を考えます。

戦略1)
この問題をそのまま解こうとすると電子で3次元、陽子で3次元なので、3+3=6次元の問題になります。
私達は今、クーロンポテンシャルが電子陽子間でしか依存しないことを知っています。
なので、古典力学で知られている通り、相対座標と重心座標を使い分離できそうだ、と考えられます。
やってみましょう。

2体問題における変数分離


2体系を考えます。(参考文献[1])
2つの物体(質量\(m_1, m_2\))には2体間の相対距離だけで決まる、時間に依存しないポテンシャル\(V({\bf r_1}-{\bf r_2})\)で相互作用しています。
よって、この系のハミルトニアン\(H\)は
\(
\displaystyle H=\frac{{\bf p_1}^2}{2m_1}+\frac{{\bf p_2}^2}{2m_2}+V({\bf r_1}-{\bf r_2})
\)

となるわけです。それに対応するシュレディンガー方程式は、
\(
\displaystyle i\hbar\frac{\partial}{\partial t}\Psi({\bf r_1},{\bf r_2},t)=\left[ -\frac{\hbar^2}{2m_1}\nabla^2_1-\frac{\hbar^2}{2m_2}\nabla^2_2 +V({\bf r_1}-{\bf r_2})\right]\Psi({\bf r_1},{\bf r_2},t)
\)

となります。ここで相対座標系
\(
\displaystyle {\bf r}={\bf r_1}-{\bf r_2},\;\;\; {\bf R}=\frac{m_1{\bf r_1}+m_2{\bf r_2}}{m_1+m_2}
\)

をとります。この座標系ではシュレディンガー方程式は以下のように書き直されます。
\(
\displaystyle i\hbar\frac{\partial}{\partial t}\Psi({\bf R},{\bf r},t)=\left[ -\frac{\hbar^2}{2M}\nabla^2_{\bf R}-\frac{\hbar^2}{2\mu}\nabla^2_{\bf r} +V({\bf r})\right]\Psi({\bf R},{\bf r},t)
\)

ここで\(M=m_1+m_2\)は系の全質量、\(\mu=\frac{m_1m_2}{m_1+m_2}\)は換算質量です。
今、ハミルトニアンが\({\bf R}と{\bf r}\)のそれぞれの和で書けています。
このことは変数分離が可能であることを示しています。なので波動関数を
\(
\Psi({\bf R},{\bf r},t)=\Phi({\bf R})e^{-iE_{CM}t/\hbar}\cdot\psi({\bf r})e^{-iEt/\hbar}
\)

として分離し、シュレディンガー方程式に代入、整理すれば\(\Phi({\bf R})\)と\(\psi({\bf r})\)に関する方程式
\(
\displaystyle -\frac{\hbar^2}{2M}\nabla^2_{\bf R}\Phi({\bf R})=E_{CM}\Phi({\bf R}) \;\;\;\; \ldots(A)
\)

\(
\displaystyle \left[-\frac{\hbar^2}{2\mu}\nabla^2_{\bf r} +V({\bf r})\right]\psi({\bf r})=E\psi({\bf r})\;\;\;\; \ldots(B)
\)

が導けます。
式\((A)\)はエネルギー\(E_{CM}\)の質量\(M\)の自由粒子に対するシュレディンガー方程式とみなせ、
式\((B)\)はポテンシャル\(V({\bf r})\)中を質量\(\mu\)を持った粒子に対するシュレディンガー方程式であるとみなせます。
系の全エネルギー\(E_{tot}\)は
\(
E_{tot}=E_{CM}+E
\)

です。
適切な座標変換により、2体問題2つの1体問題に置き換えた。そういう事を今やったのです。

——
水素原子に適応しましょう[2]。
クーロンポテンシャル\(V(r)\)は
\(
\displaystyle V(r)=-\frac{e^2}{4\pi\varepsilon_0 r}
\)

と書けます。ここで、\(r\)は電子陽子間距離を表します。
電子の質量を\(m\), 陽子の質量を\(M\)と記述します。

重心と共に動く座標系で考えましょう。
今、重心は止まっています(重心の運動量\({\bf P}=0\))。
なので、解くべき問題は1体の時間依存しないシュレディンガー方程式だけで、
\(
\displaystyle \left[-\frac{\hbar^2}{2\mu}\nabla^2 -\frac{e^2}{4\pi\varepsilon_0 r}\right]\psi({\bf r})=E\psi({\bf r}) \;\;\;\;\; \ldots(1)
\)

を解けばよい、ということになりました。\(\mu=\frac{mM}{m+M}\)はこの系の換算質量を表します。

戦略2)
6次元の問題から重心の自由度を3つ減らして3次元の問題に落とせたわけですが、3次元の問題を解くのはまだまだ大変です。相互作用ポテンシャルが中心力ポテンシャルであることから、3次元極座標で考えればrに関する項は変数分離できて、少なくともrに関する次元が更に1つ落とせそうです。あわよくば、残りの2次元も変数分離出来たら1次元の問題が3つになって嬉しいのですが、果たしてそううまくいくのでしょうか・・・

3次元極座標を用いた変数分離


ここでは3次元極座標、特に球面座標を使って変数分離を試みましょう(実は球面座標以外でも放物座標系と呼ばれる座標を使っても変数分離できます)

球面座標は、空間を\(r,\theta,\phi\)を用いて指定する座標です。デカルト座標との間には、

\(
\begin{eqnarray}
\left\{
\begin{aligned}
r &=\sqrt{x^2+y^2+z^2} \\
\theta&= \arccos{\frac{z}{r}}\\
\phi&=\tan^{-1}\frac{y}{x}
\end{aligned}
\right.
\;\;\;\;\;\;\;\;
\left\{
\begin{aligned}
x &= r\sin{\theta}\cos{\phi} \\
y &= r\sin{\theta}\sin{\phi} \\
z &= r\cos{\theta}
\end{aligned}
\right.
\end{eqnarray}
\)

の関係があり、体積要素\(d{\bf V}\)は
\(
d{\bf V}=r^2\sin{\theta}dr d\theta d\phi
\)

と表されます。

波動関数\(\psi({\bf r})\)を動径方向について分離します。
\(
\psi({\bf r})=R(r)Y(\theta,\phi)
\)

この座標系でのラプラシアン\(\nabla^2\)は
\(
\displaystyle \nabla^2=\frac{1}{r^2}\frac{\partial}{\partial r}\left(r^2\frac{\partial}{\partial r}\right)+\frac{1}{r^2\sin{\theta}}\frac{\partial}{\partial \theta}\left(\sin{\theta}\frac{\partial}{\partial \theta}\right)+\frac{1}{r^2\sin^2{\theta}}\frac{\partial^2}{\partial \phi^2}
\)

であるので、これらを式(1)に代入すると、
\(
\begin{align}
\displaystyle \left[-\frac{\hbar^2}{2\mu}\left\{\frac{1}{r^2}\frac{\partial}{\partial r}\left(r^2\frac{\partial}{\partial r}\right)+\frac{1}{r^2\sin{\theta}}\frac{\partial}{\partial \theta}\left(\sin{\theta}\frac{\partial}{\partial \theta}\right)+\frac{1}{r^2\sin^2{\theta}}\frac{\partial^2}{\partial \phi^2}\right\} -\frac{e^2}{4\pi\varepsilon_0 r}\right]R(r)Y(\theta,\phi)\\
=ER(r)Y(\theta,\phi)
\end{align}
\)

を得ます。


調べた限りではここからの解法は2つに分かれます。
①数学的に直接解く
②物理的意味を持つ角運動量演算子を考えながら解く
です。
どちらでも最後は同じになるので構わないと思います。
もしも深く知りたい場合は①を解いてから②を解くことをお勧めします。
長くなるのでページを移します。

①直接解く場合は後ほど

②物理的意味を踏まえながら解く場合は後ほど

参考文献

[1]Physics of Atoms and Molecules 2nd Edition pp.109~111 by B.H. Bransden C.J. Joachain(2003)
[2]Physics of Atoms and Molecules 2nd Edition pp.147~148 by B.H. Bransden C.J. Joachain(2003)
※参考した本はこれです。


コメントを残す

メールアドレスが公開されることはありません。 * が付いている欄は必須項目です