「物理学」カテゴリーアーカイブ

非線形Schrödinger方程式のソリトン解

非線形シュレディンガー方程式
\(
\displaystyle i\frac{\partial \Psi}{\partial t}=-\frac{1}{2}\frac{\partial^2 \Psi}{\partial x^2}-g|\Psi|^2\Psi
\)

にはある解析解が存在します。それがソリトン(soliton)解と呼ばれるもので,上式のソリトン解は
\(
\displaystyle \Psi(x,t)=\sqrt{\Omega}\ {\rm sech}\left\{\sqrt{\Omega}\left(x\sqrt{g}-\frac{gV}{2}t\right)\right\}\cdot \exp\left\{i\frac{V\sqrt{g}}{2}x-i\frac{g}{2}\left(\frac{V^2}{4}-\Omega\right)t\right\}
\)

です。(\(g>0\),\(\Omega\):ソリトンの振幅、\(V\):ソリトンの速度に関するパラメータ、ソリトン自体の速度は\(V\sqrt{g}/2\))

[adsense1]

ソリトンの歴史的背景


「非線形」とは重ね合わせの原理が成り立たない系です。

1844年、スコットランドのJ.Scott-Russellによって孤立した波(solitary wave)を観測した事が報告されました J.Scott-Russellによる報告”Report on Waves”(リンク先のSR44.pdf, 16.3MB))。
当時の認識では、波は波動方程式で記述され、その波の速度\(v\)は\(v=f\lambda\)の元、一定である。だからパルス状の波は異なる波長の波の重ね合わせで書けているはずで、時間と共に分散していくはず。なのになぜ時間が経過しても孤立した波が存在できるのか?という事で大きな論争となりました。

60年後の1895年、オランダのKortewegとde Vriesによって”浅い水の波”を記述する非線形偏微分方程式(KdV方程式)が提出され、この方程式の特解として孤立波が与えられました。
孤立波は、

  1. 空間的に局在した波が、その性質(速さや形)を変えずに伝搬する
  2. 孤立波は互いの衝突に対して安定であり、各々の個別性を保持する

という性質を持つ非線形波動と定義されます[1]。
2番目の、粒子のような性質を持つことから、solitary に接頭語-on をつけ、soliton(ソリトン)と名づけられました。

その後、1981年に佐藤幹夫がソリトンの統一理論(佐藤理論やKP理論)を発表しました。
これによりソリトン方程式(ソリトンを記述し,かつ厳密に解ける方程式)に決着が付きました。
ソリトン方程式は非線形なのに厳密に解ける、可積分系である。

ソリトン方程式を解く方法は([4]を引用しますが)

上で指摘したように,logistic方程式が解けるからくりとソリトン方程式が解けるからくりはよく似ています.違いは,logistic方程式が変数変換一発で線形常微分方程式になってしまったのに対し,ソリトン方程式の場合は変数変換で双線形形式になり,双線形形式の解として行列式が現れ,行列式の中身に簡単な線形方程式が現れるというところです.しかし,離散化で保存するべき構造は明らかです.まず,解の中身の線形方程式を離散化し,行列式の構造をそのまま使って双線形形式を作る.最後に変数変換して非線形のレベルに戻ればよい.

となるそうです。

また、ソリトン方程式の特徴である、無限個の対称性(無限個の保存量)は、Gardner変換という変換をすることで証明できるそうです[5]。
これ以上はこの分野の専門家ではないので話せません。

ちなみに津波もソリトンの一つとみなせます。

ソリトン解が生まれるイメージ


なぜソリトン解が生まれるのでしょうか。
今、孤立した波(空間的に凸)を考えます。この時、

エネルギー的に安定になろうとして密度を均一にするために広がろうとする効果

粒子間を結び付ける引力相互作用(例えば水面だったら水と水との分子間力等)のため集まろうとする効果

のつり合いによって、丁度均衡が保たれるとき、このソリトン解が生まれます。

・・・実は、ソリトン解には2種類あります。
それは明るい(Bright)ソリトン解と暗い(Dark)ソリトン解です。
今まで話していたのは全て明るいソリトン解です。
暗いソリトン解とはどういったものでしょう。
暗いソリトン解とは、ある部分が空間的に凹んでいる、孤立した解です。

エネルギー的に安定になろうとして密度を均一にするためにその凹みを埋めようとする効果

粒子間の斥力相互作用のために粒子間を避けようとする効果

のつり合いによって、丁度均衡が保たれるとき、この暗いソリトン解が生まれます。
暗いソリトン解が生まれるのは斥力相互作用の時で、斥力相互作用を持つ系というのは、調べた限りでは量子力学のボーズ・アインシュタイン凝縮体で、暗いソリトンは渦ソリトンという形で現れるそうです。これ以上の具体例は分かりませんでした。もしも具体例を知っているという方は教えていただければ幸いです。
暗いソリトンの解析解は参考文献[1]の本に紹介されているので、それをご参考にしてください。

非線形シュレディンガー方程式におけるソリトン解


では本題の、非線形シュレディンガー方程式における(明るい)ソリトン解を考えましょう。
下の形の非線形シュレディンガー方程式を考えます。
\(
\displaystyle i\frac{\partial \Psi}{\partial t}=-\frac{1}{2}\frac{\partial^2 \Psi}{\partial x^2}-g|\Psi|^2\Psi
\)

ここで、\(\Psi=\Psi(x,t)\)で、\(g\)はの値で相互作用の強さ(この場合、引力相互作用)を表します。

この非線形シュレディンガー方程式のソリトン解\(\Psi(x,t)\)は、
\(
\displaystyle \Psi(x,t)=\sqrt{\Omega}\ {\rm sech}\left\{\sqrt{\Omega}\left(x\sqrt{g}-\frac{gV}{2}t\right)\right\}\cdot \exp\left\{i\frac{V\sqrt{g}}{2}x-i\frac{g}{2}\left(\frac{V^2}{4}-\Omega\right)t\right\}
\)

であり、\(\Omega\)はソリトンの振幅の大きさ、\(V\)はソリトンの速度を決めるパラメータを表します。ソリトン自体の速度は\(V\sqrt{g}/2\)となります([2]を参考)。
また、\({\rm sech}(x)\)は双曲線関数の一種(双曲線正割と呼ばれる)であり、
\(
\displaystyle {\rm sech}(x)=\frac{1}{\rm cosh(x)}=\frac{2}{e^{x}+e^{-x}}
\)
を表します。

解析解のプロット

解析解をプロットします。gnuplotコードは下のほうに載せておきます。
\(g=2, V=1, \Omega=1\)とすると、以下の振る舞いが観測されます。
ここで紫はソリトン解の実部、緑は虚部、青は絶対値2乗を表します。
動画は1枚当たり原子単位系で0.1秒、合計で10秒間のシミュレーションです。
また、このソリトンの速度は\(V\sqrt{g}/2\sim 0.7071\)です。
soliton1

[adsense2]

gnuplotコード


非線形シュレディンガー方程式のソリトン解(解析解)を出力します。
gnuplot上で下のスクリプトを実行してください。
(ただし、gnuplot ver4.6以降に限ります。)

omega=1e0
V=1e0
g=2e0
x0=-5e0 # initial position

set xr[-10:10]
set yr[-1.5:1.5]
set samples 1000
set xl "x[a.u.]"

sech(x)=2e0/(exp(x)+exp(-x))
amp(x,t)=sqrt(omega)*sech(sqrt(omega)*((x-x0)*sqrt(g)-g*V*t*0.5e0))
phase(x,t)=V*sqrt(g)*x*0.5e0-g*t*0.5e0*(V*V*0.25e0-omega)
soliton(x,t)=amp(x,t)*exp({0e0,1e0}*phase(x,t))


#set term gif animate delay 10 optimize size 960,720
#set output 'movie.gif'
do for[i=0:100:2]{
   t=i*0.1e0
   plot abs(soliton(x,t))**2 lw 3 lc 1 lt 1 ti sprintf("|\psi|^2, t=%2.1f",t),\
        real(soliton(x,t)) lw 3 lc 2 lt 2 ti "Real",\
        imag(soliton(x,t)) lw 3 lc 3 lt 3 ti "imag"
}
#set out
#set terminal wxt enhanced

もっとソリトンについて知りたい方はまず参考文献[3]を読むことをお勧めします。
その後、[4]を読み、[5]を読み、[1]の本を読むのが良いと思われます。
[3],[4]は簡単な表現を用いてソリトンとその後の発展について記述されています。

参考文献


[1]和達三樹著 『非線形波動 (現代物理学叢書) 』岩波書店 (2000年) p.7
[2]和達三樹著 『非線形波動 (現代物理学叢書) 』岩波書店 (2000年) p.29

[3]ソリトンの数学 – Researchmap
[4]ソリトン ~ 不思議な波が運んできた,古くて新しい数学の物語 ~
[5]〔連載〕非線形波動―ソリトンを中心として―第5章 逆散乱法


↑画像のフォントはキユマヤ園様による数式フォント -びゅんびゅん→SSSです!


球体の抗力係数

説明


本稿では、完全な球体に働く抗力係数について述べます。
ここでは概要だけを説明します。詳細は以下のPDFをご覧ください。

https://slpr.sakura.ne.jp/qp/supplement_data/drag_coefficient_air/drag_coefficient.pdf

概要

速度\(v(=|\mathbf{v}|)\)で動く半径\(R\)の完全な球体に働く空気抵抗力の大きさ\(F_d(=|\mathbf{F}_d|)\)は,
\begin{align}
F_d =\frac{1}{2} C_d(R_e) \rho \pi R^2 v^2
\end{align}
と書けます. 空気抵抗力\(\mathbf{F}_d\)は, 球体の速度方向と反対に働くので, 方向を含めれば
\begin{align}
\mathbf{F}_d =-\frac{1}{2} C_d(R_e) \rho \pi R^2 v^2\frac{\mathbf{v}}{v}
\end{align}
と書けます.

つまり、重力加速度\(g\)の重力下における質量\(m\)の完全な球体に対する運動方程式は
\begin{align}
m\frac{d^2}{dt^2}\mathbf{r} =-mg\mathbf{k}-\frac{1}{2} C_d(R_e) \rho \pi R^2 v^2\frac{\mathbf{v}}{v}
\end{align}
となります。ここで、\(\mathbf{k}\)は重力の方向の単位ベクトル(多くの場合では鉛直上向きを\(z\)軸の正の方向、単位ベクトル\(\mathbf{k}\)とするので、負号が付いています)です。
速度が非常に遅い極限\((R_e\to 0)\)においては、\( C_d(R_e)|_{R_e\to 0}\to \frac{24}{R_e}\)となります。

完全な球体の抗力係数\(C_d\)における近似式は、レイノルズ数を\(R_e\)として以下の通り与えられます。

  • \(R_e\lt 2\times 10^5\)層流領域のみ
    \begin{align}
    C_d(R_e)&=\left[\frac{24}{R_e}(1+0.15 R_e^{0.687})\right]+\frac{0.42}{1+(\frac{42500}{R_e^{1.16}})},~~~\mbox{式(1)}
    \end{align}
    ただし、\(R_e \lt 2\times 10^5~~\mbox{and}~~K_n \lt 0.01 ~~\mbox{and}~~ M_a\to 0 \)
  • \(R_e\lt 2\times 10^5\)の層流領域のみ、マッハ数\(M_a\)依存性込み
    \begin{align}
    C_d(R_e)
    =\frac{24}{R_e}(1+0.15 R_e^{0.687})H_M
    +\frac{0.42 C_M}{1+(\frac{42500}{R_e^{1.16C_M}})+\frac{G_M}{R_e^{0.5}}} ,~~~\mbox{式(2)}
    \end{align}
    ここで、\(C_M, G_M, H_M\)は以下の通り与えられます。
    \(\displaystyle
    \begin{eqnarray}
    C_M=\left\{~~
    \begin{aligned}
    &1.65+0.65\tanh(4M_a-3.4)~~~~~\mbox{for} ~~~M_a\lt 1.5\\
    &2.18-0.13\tanh(0.9M_a-2.7)~~~\mbox{for} ~~~M_a\gt 1.5
    \end{aligned}
    \right.
    \end{eqnarray}
    \)

  • \(\displaystyle
    \begin{eqnarray}
    G_M=\left\{~~
    \begin{aligned}
    &166M_a^3+3.29M_a^2-10.9M_a+20~~~\mbox{for} ~~~M_a\lt 0.8\\
    &5+40M_a^{-3}~~~\hspace{9.4em}\mbox{for} ~~~ M_a\gt 0.8
    \end{aligned}
    \right.
    \end{eqnarray}
    \)

    \(\displaystyle
    \begin{eqnarray}
    H_M=\left\{~~
    \begin{aligned}
    &0.0239M_a^3+0.212M_a^2-0.074M_a+1~~~\mbox{for} ~~~ M_a\lt 1\\
    &0.93+\frac{1}{3.5+M_a^5}~~~\hspace{8.8em}\mbox{for} ~~~ M_a\gt 1
    \end{aligned}
    \right.
    \end{eqnarray}
    \)

  • 定性的、広範囲
    \begin{align}
    C_d
    =\frac{24}{R_e}
    +\frac{2.6\left(\frac{R_e}{5.0}\right)}{1+\left(\frac{R_e}{5.0}\right)^{1.52}}
    + \frac{0.411\left(\frac{R_e}{263000}\right)^{-7.94}}{1+\left(\frac{R_e}{263000}\right)^{-8.00}}
    + \left(\frac{0.25\frac{R_e}{10^6}}{1+\frac{R_e}{10^6}}\right),~~~\mbox{式(3)}
    \end{align}

対象物が流体中を高速で動かなければ、層流領域で実験値を良く合う式(1)(図中の赤線), 式(2)で十分でしょう。
温度なども含めたいならば、PDFで説明しているレイノルズ数、マッハ数を置き換えて利用することを勧めます。
また精度はあまりいらない状況で、定性的な理解だけを対象とするならば、乱流領域の振る舞いを含む式(3)(図中の水色線)を用いると良いです。

以降、詳細は
https://slpr.sakura.ne.jp/qp/supplement_data/drag_coefficient_air/drag_coefficient.pdf
をご覧ください。

弾道計算(BB弾)の結果2、違う重さでの比較

本稿の主要な結果は、様々なパラメータでの、BB弾の軌道の詳細なデータです。

この結果に付随して、
0.25g0.8Jの軌道は
0.20g1.2Jの軌道と同じであることが分かりました。

上下振れ幅が最小になる軌道における、重さとエネルギー、ゼロイン位置を様々にとった時のそれぞれのデータです。
弾道計算を数値計算によって行い、結果を考察することが本稿の目的となります。
※本稿では規定のエネルギーを超える場合のデータがありますが、このデータは全て数値シミュレーションであるため、こういったエアガンを持っている訳ではありません。

弾道計算に関するその他ページ
弾道計算(BB弾)の理論
BB弾の回転量について(実験との比較)
弾道計算(BB弾)の結果
弾道計算の結果2, 比較と詳細データ←今ここ
弾道計算(BB弾)のコード(fortran90)
バレル内部でのBB弾の方程式
水中下でのBB弾の弾道計算


様々なパラメータの最適な軌道


ここで載せるデータは、以下の組み合わせです。

BB弾の重さ: 0.20g , 0.25g
エネルギー:0.60J 0.65J 0.70J 0.75J 0.80J 0.85J 0.90J
ゼロイン位置:25m 30m 35m 40m 45m 50m 55m 60m(0.25gのみ)
各々でどのような軌道を描くかの計算結果を載せます。
破線はホップ無しの軌道に対応しています。

↓これは低画質です。高画質版はこのリンク(4.3MB)を踏んでください。
弾道詳細データ_高画質2 - コピー_c


最適な軌道に合わせるためには下向きに初速を与えます。
その時、下向きに何度傾けて撃てばいいか、のデータはこちらです。

ゼロインと下向き角度


前提


まず、規定速度うんぬんは別にしまして、事実を述べます。

  1. BB弾は重いほど弾はまっすぐ飛ぶ
  2. 射出速度が早いほど弾はまっすぐ飛ぶ
  3. ホップを掛けるほど弾は上下に揺れる

これらは紛れもない事実です。
よって、BB弾を飛ばす最高の条件とは、
「射出速度を早くし、ホップは余りかけないで重いBB弾を使うこと」
となります。
だからこそ、射出速度を速めようとして規定速度の話になります。

最適な軌道とは?


BB弾を飛ばすうえで最適な軌道とはどんな軌道でしょう?
それはホップによる上下方向の揺れを最小限に抑える軌道です。
この最適な軌道とは、BB弾の重さとエネルギーとゼロイン位置を決めた時の理想的な軌道、ということです。

ゼロイン位置と上下の振れ幅とは何かは、下の画像をご覧ください。
0.25,0.8_compressed

重さとエネルギーを決めても、どの角度で射出すればいいか、回転数はいくつか、など他のパラメータが残ります。
それを決めるため、ホップによる上下方向の揺れを最小限に抑える軌道を定めます。

この軌道を ”最適な軌道” と呼ぶことにします。

重さの違いによる軌道の具体的な影響


今度は、ゼロイン位置を固定します。
そして、BB弾の重さとエネルギーを変化させたとき、どのような軌道をたどるか見てみましょう。
zeroin50_2_cc

この結果から分かることは2点あります。

1つ目は、エネルギーを上げていくと軌道の変化が小さくなる
2つ目は、重いBB弾の軌道ほどまっすぐ飛ぶ

ということです。

エネルギーを上げると軌道の変化が小さくなる

0.20gの場合でゼロインを50mに合わせ、エネルギーを0.1Jずつ増やしていったとき、上下振れ幅がどのくらい減少していくのか見てみましょう。

0.60J→0.70J … 14.2cm
0.70J→0.80J … 10.4cm
0.80J→0.90J … 8.0cm
0.90J→1.00J … 6.2cm
1.00J→1.10J … 5.0cm
1.10J→1.20J … 4.2cm
1.20J→1.30J … 3.6cm
1.30J→1.40J … 3.0cm

となります。エネルギーを変えるよりも重さを変えるべきです。
それだけで軌道は大きく変わります。

例えば、0.80Jで射出できるエアガンで、使うBB弾を0.25gで射出すると、この時、軌道は0.20g1.2Jの軌道にほぼ一致します。
m020J12m025J08_2_c

まぁ、軌道自体は一致するのですが、残念ながら到達時間は一致しません。
約0.1秒(まばたき程度)、0.20g1.2Jのほうが早くなります。
zeroin50_2_time_c

追記)
0.25gで0.90Jは、0.20gの1.35Jの軌道におおよそ相当します。
0.30gで0.80Jは、0.20gの1.60J, 0.25gの1.05Jの軌道におおよそ相当します。
0.30gで0.90Jは、0.20gの1.80J, 0.25gの1.20Jの軌道におおよそ相当します。

0.25gで0.8Jでうまく合わせられたら50m飛ばしても上下の振れ幅40cmです。
上に20cm、下に20cmしかずれません。
また、エネルギーを上げても空気抵抗の強さは速度の2乗に比例して強くなるため、それに見合うようなの飛距離の伸びは得られません。


補足


「流速チューン」というものがあるそうですね。
流速チューンの問題点と改善案について -週休5日

流速チューン比較テスト その1「初速変化」 -Gunsmithバトン
にあるように。

本稿ではこれらのことについては全く触れていません。
というのも、銃口から射出された直後の初速と回転数の2つだけが軌道に影響するためであり、発射するまでの過程に何があったか?などどうでもいいのです。
数値計算の観点から言いますと、通常の軌道よりも「まっすぐ遠くまで飛ぶ」場合、初速が上がっていること以外には考えられません
BB弾を飛んでいる最中で加速させる要因など無いのです。


※1
なぜBB弾を使う限り初速を稼ぐことが無駄なのか?
これは空気抵抗が関係します。
空気抵抗の大きさは弾道計算(BB弾)の理論で書いたように、BB弾の半径\(R\)と速度\(v\)にのみ依存します。
空気抵抗力を半径\(R\)と速度\(v\)の関数として\(F_d(R,v)\)、質量\(m\)とすると、その運動方程式は
\(
m\frac{d^2\vec{r}}{dt^2}=F_d(R,v)
\)
であり、両辺をmで割れば
\(
\frac{d^2\vec{r}}{dt^2}=F_d(R,v)/m
\)
となります。BB弾の半径や、温度、空気は変えられないので、可変なパラメータは質量と速度のみです。
そして右辺だけに注目すれば、質量が大きいほど空気抵抗力があたかも小さくなるのです。
すなわち、空気抵抗力を減らそうとするにはBB弾の重さを変えるほかない。
また、初速を変えても空気抵抗は速度の2乗で効いてくるため、皮肉なことに速度が早いほど空気抵抗力が強くなっていくのです。
よって、高いエネルギーでは初速を上げてもそれに見合っただけの結果は得ることはできないのです。

Schrödinger, Heisenberg, Interaction描像

Schrödinger描像、Heisenberg描像、Interaction描像というものがあります。

Schrödinger描像は波動関数による表現方法で、多くの場合で分かりやすい表現なため良く取り入れられます。
ただし、時と場合によってHeisenberg描像の方が分かりやすかったり、Interaction描像の方が最適、というときがあります。

表現方法が違うだけで同じものを表現します。

  1. Schrödinger描像(S描像)

    \(\hat{H}\)が時間依存しない場合、時刻\(t\)での波動関数は初期状態(\(t=0\))の波動関数\(\Psi_S(0)\)を用いて、
    \(
    \displaystyle \Psi_S(t)=e^{-i\frac{\hat{H}}{\hbar}t}{\Psi_s(0)}\ \ \ \ (1)
    \)

    と書くことができます。ここで添え字”\(S\)“はS描像であることを強調しています。
    \(\displaystyle \hat{U}(t)=e^{-i\frac{\hat{H}}{\hbar}t}\ \ \ (2)\)
    と表記されることが多く、時間発展演算子と呼ばれています。
    今、(2)の両辺を時間微分すると、\(\hat{U}(t)\)の満たす微分方程式
    \(
    \displaystyle i\hbar \frac{d\hat{U}(t)}{dt}=\hat{H}\hat{U}(t), \ \ \ \hat{U}(0)=1\ \ \ (3)
    \)

    が得られます。また、式(3)は実は\(\hat{H}\)が時間依存していても成立します。
    この意味は、式(3)が時間発展演算子のより一般的な記述方法であることを意味しています。

    今、Schrödinger描像で、とある演算子\(\hat{A}\)の期待値を考えます
    (\(\hat{A}_S\)は時間依存してもしなくてもok)。
    (例えば\(\hat{A}_S\)は位置空間で、位置演算子だったら\(\hat{x}=x\)、運動量演算子だったら\(\hat{p}=-i\hbar\frac{d}{dx}\)です。)
    すると、その期待値を表す関数は時間依存し、時刻\(t\)の\(\hat{A}\)の期待値\(\langle\hat{A}\rangle_t\)は
    \(
    \begin{align}
    \langle\hat{A}\rangle_t
    &\displaystyle =\langle{\Psi_S}(t)|\hat{A}_S|\Psi_S(t)\rangle \\
    &\displaystyle =\langle e^{-i\frac{\hat{H}}{\hbar}t} \Psi_S(0)|\hat{A}_S|e^{-i\frac{\hat{H}}{\hbar}t}\Psi_s(0)\rangle
    \end{align}
    \)
    と書けます。これがSchrödinger描像における演算子の期待値を表現しています。

  2. Heisenberg描像(H描像)

    時刻\(t\)でのHeisenberg描像の波動関数\(\Psi_H(t)\)の定義は
    \(
    \begin{align}
    \Psi_H(t)&=e^{i\frac{\hat{H}}{\hbar}t}\Psi_S(t) \\
    &=e^{i\frac{\hat{H}}{\hbar}t}e^{-i\frac{\hat{H}}{\hbar}t}\Psi_S(0) \\
    &=\Psi_S(0)
    \end{align}
    \)
    です。
    Heisenberg描像で、\(\hat{A}\)の期待値\(\langle\hat{A}\rangle_t\)を考えましょう。
    \(
    \begin{align}
    \langle\hat{A}\rangle_t&=\langle\Psi_S(t)|\hat{A}_S|\Psi_S(t)\rangle \\
    &\displaystyle =\langle\Psi_S(t)|e^{-i\frac{\hat{H}}{\hbar}t}e^{i\frac{\hat{H}}{\hbar}t}\hat{A}_S e^{-i\frac{\hat{H}}{\hbar}t}e^{i\frac{\hat{H}}{\hbar}t}|\Psi_S(t)\rangle \\
    &\displaystyle =\langle\Psi_H(0)|\hat{A}_H(t)|\Psi_H(0)\rangle
    \end{align}
    \)
    すなわち、S描像の演算子\(\hat{A}_S\)との間には、
    \(
    \hat{A}_H(t)=e^{i\frac{\hat{H}}{\hbar}t}\hat{A}_S e^{-i\frac{\hat{H}}{\hbar}t}
    \)

    という関係があるのです。

    では、H描像で演算子\(\hat{A}_H(t)\)の時間依存性はどうなるのでしょう。
    上の式を両辺微分して\(i\hbar\)を掛けると、
    \(
    \begin{align}
    i\hbar\frac{d}{dt}\hat{A}_H(t)&=
    -\hat{H}e^{i\frac{\hat{H}}{\hbar}t}\hat{A}_S e^{-i\frac{\hat{H}}{\hbar}t}
    +e^{i\frac{\hat{H}}{\hbar}t}\hat{A}_S e^{-i\frac{\hat{H}}{\hbar}t}\hat{H} \\
    &=-\hat{H}\hat{A}_H(t)+\hat{A}_H(t)\hat{H} \\
    i\hbar\frac{d}{dt}\hat{A}_H(t)&=\left[\hat{A}_H(t), \hat{H}\right]
    \end{align}
    \)

    もしも、\(\hat{A}_S\)が時間依存する形だったら
    \(
    \displaystyle i\hbar\frac{d}{dt}\hat{A}_H(t)=\left[\hat{A}_H(t), \hat{H}\right]+i\hbar \frac{\partial \hat{A}_H(t)}{\partial t}
    \)
    と書けます。

  3. Interaction描像(I描像)

    前提がありまして、系のハミルトニアン\(\hat{H}\)を\(\hat{H}=\hat{H}_0+\hat{V}\)と分けます。
    そして、\(\hat{H}_0\)の時間発展は分かっているものとします。

    この時、時刻\(t\)でのInteraction描像の波動関数\(\Psi_I(t)\)の定義は
    \(
    \begin{align}
    \Psi_I(t) &= e^{i\frac{\hat{H_0}}{\hbar}t}\Psi_S(t) \\
    &(= e^{i\frac{\hat{H_0}}{\hbar}t}e^{-i\frac{\hat{H}}{\hbar}t}\Psi_S(0) )
    \end{align}
    \)
    です。
    このInteraction描像の波動関数の意味を簡単に説明すると、
    \(\Psi_I(t)\)は、ある時刻で、S描像の波動関数を\(e^{-i\frac{\hat{H}}{\hbar}t}\)に従って時間を進める方向に時間発展させる部分と、\(e^{i\frac{\hat{H}_0}{\hbar}t}\)に従って時間を戻す方向に時間発展させる部分の2つがある、ということです。
    詳しくは後ほど述べます。

    I描像での演算子\(\hat{A}\)の期待値\(\langle\hat{A}\rangle_t\)はどうなるのでしょう。
    \(
    \begin{align}
    \langle\hat{A}\rangle_t&=\langle\Psi_S(t)|\hat{A}_S|\Psi_S(t)\rangle \\
    &\displaystyle =\langle\Psi_S(t)|e^{-i\frac{\hat{H}_0}{\hbar}t}e^{i\frac{\hat{H}_0}{\hbar}t}\hat{A}_S e^{-i\frac{\hat{H}_0}{\hbar}t}e^{i\frac{\hat{H}_0}{\hbar}t}|\Psi_S(t)\rangle \\
    &\displaystyle =\langle\Psi_I(t)|\hat{A}_I(t)|\Psi_I(t)\rangle
    \end{align}
    \)
    と書けます。

    すなわち、I描像では演算子が時間依存し、波動関数も時間依存します。
    よって、
    Interaction描像での演算子\(\hat{A}_I(t)\)の時間依存を記述する方程式と、
    Interaction描像での波動関数\(\Psi_I(t)\)の時間依存を記述する方程式
    があり、それらを求めてみましょう。

    • 演算子\(\hat{A}_I(t)\)の時間依存

      \(
      \hat{A}_I(t)=e^{i\frac{\hat{H}_0}{\hbar}t}\hat{A}_S e^{-i\frac{\hat{H}_0}{\hbar}t}
      \)
      演算子の期待値は上式の通りであり、もしも\(\hat{H}_0\)が時間依存しない場合、Heisenberg描像で\(\hat{H}\to \hat{H}_0\)と置き換えたものと同じ形になります。すなわち、
      \(
      \displaystyle i\hbar\frac{d}{dt}\hat{A}_I(t)=\left[\hat{A}_I(t), \hat{H}_0\right]
      \)
      となります。もしも\(\hat{H}_0\)が時間依存する場合は、
      \(
      \displaystyle i\hbar\frac{d}{dt}\hat{A}_I(t)=\left[\hat{A}_I(t), \hat{H}_0\right]+i\hbar \frac{\partial \hat{A}_I(t)}{\partial t}
      \)

    では、I描像で波動関数\(\Psi_I(t)\)が満たす運動方程式はどうなるでしょう。
    I描像の波動関数の定義式に左から\(e^{-i\frac{\hat{H_0}}{\hbar}t}\)を掛けると、
    \(
    \Psi_S(t) = e^{-i\frac{\hat{H_0}}{\hbar}t}\Psi_I(t)
    \)
    であり、これをS描像のSchrödinger方程式に代入します。
    \(
    \begin{align}
    & i\hbar \frac{\partial}{\partial t}\left(e^{-i\frac{\hat{H}_0}{\hbar}t}\Psi_I(t)\right)
    =\hat{H}e^{-i\frac{\hat{H}_0}{\hbar}t}\Psi_I(t) \\
    & i\hbar \left[-\frac{i}{\hbar}\hat{H}_0 e^{-i\frac{\hat{H}_0}{\hbar}t}\Psi_I(t)+e^{-i\frac{\hat{H}_0}{\hbar}t}\frac{\partial \Psi_I(t)}{\partial t}\right]
    =\hat{H}_0e^{-i\frac{\hat{H}_0}{\hbar}t}\Psi_I(t)+\hat{V}e^{-i\frac{\hat{H}_0}{\hbar}t}\Psi_I(t) \\
    & i\hbar e^{-i\frac{\hat{H}_0}{\hbar}t}\frac{\partial \Psi_I(t)}{\partial t}=\hat{V}e^{-i\frac{\hat{H}_0}{\hbar}t}\Psi_I(t) \\
    \end{align}
    \)
    左から\(e^{i\frac{\hat{H}_0}{\hbar}t}\)を作用させると、
    \(
    \displaystyle i\hbar \frac{\partial \Psi_I(t)}{\partial t}=e^{i\frac{\hat{H}_0}{\hbar}t}\hat{V}e^{-i\frac{\hat{H}_0}{\hbar}t}\Psi_I(t)
    \)
    ここで、Interaction描像の演算子\(\hat{H}_I(t)\)を
    \(
    \displaystyle \hat{H}_I(t)=e^{i\frac{\hat{H}_0}{\hbar}t}\hat{V}e^{-i\frac{\hat{H}_0}{\hbar}t}
    \)
    と置くと、波動関数\(\Psi_I(t)\)が満たす運動方程式
    \(
    \displaystyle i\hbar \frac{\partial \Psi_I(t)}{\partial t}=\hat{H}_I(t)\Psi_I(t)
    \)
    が得られます。

さて、定義が終わったところで、Heisenberg描像とInteraction描像の意味を見てみましょう。
簡単にそれぞれの描像を説明すると、

Heisenberg描像量子-古典対応を成す
Interaction描像既に分かっている部分を取り除く

という特徴があります。

まずはHeisenberg描像から。
Heisenberg描像でHeisenberg描像の演算子\(\hat{A}_H(t)\)の時間発展を記述する運動方程式は
\(
i\hbar\frac{d}{dt}\hat{A}_H(t)=\left[\hat{A}_H(t), \hat{H}\right] \cdots(A)
\)
です。
今、\(\hat{A}_H(t)\)が位置演算子\(\hat{q}\)と運動量演算子\(\hat{p}\)によって表記されていると考えます。
この時、Schrödinger描像で、それぞれの演算子はハミルトニアンと
\(
\begin{align}
\left[\hat{q}_S,\hat{H}_S\right] &= i\hbar \frac{\hat{p}_S}{m} \\
\left[\hat{p}_S,\hat{H}_S\right] &= -i\hbar \frac{\partial}{\partial \hat{q}_S}\hat{H}_S
\end{align}
\)
という関係があります。
Heisenberg描像でSchrödinger描像のハミルトニアンがどう記述されるのかを考えてみると、
\(
\begin{align}
\hat{H}_S &= \frac{\hat{p}_S^2}{2m}+\hat{V}_S \\
&= \frac{1}{2m}e^{-i\frac{\hat{H}_S}{\hbar}t}\hat{p}_H^2 e^{i\frac{\hat{H}_S}{\hbar}t}+e^{-i\frac{\hat{H}_S}{\hbar}t}\hat{V}_H^2 e^{i\frac{\hat{H}_S}{\hbar}t} \\
&= e^{-i\frac{\hat{H}_S}{\hbar}t}\left( \frac{\hat{p}_H^2}{2m}+\hat{V}_H\right) e^{i\frac{\hat{H}_S}{\hbar}t} \\
\hat{H}_H&= e^{i\frac{\hat{H}_S}{\hbar}t}\hat{H}_S e^{-i\frac{\hat{H}_S}{\hbar}t} \\
&=\hat{H}_S
\end{align}
\)
となり、結局
\(
\hat{H}_S=\hat{H}_H
\)

であることが導かれます。
Heisenberg描像での位置演算子\(\hat{q}\)と運動量演算子\(\hat{p}\)の交換関係は
\(
\begin{align}
\left[\hat{q}_H,\hat{H}_H\right] &= i\hbar \frac{\hat{p}_H}{m} \\
\left[\hat{p}_H,\hat{H}_H\right] &= -i\hbar \frac{\partial}{\partial \hat{q}_H}\hat{H}_H \\
\end{align}
\)
であることが導けるため、\(\hat{q}_H\)と\(\hat{p}_H\)に関して、運動方程式に代入して
\(
\begin{align}
i\hbar\frac{d}{dt}\hat{p}_H(t)&=\left[\hat{p}_H(t), \hat{H}_H\right] \\
&= -i\hbar \frac{\partial}{\partial \hat{q}_H}\hat{H}_H \\
\frac{d}{dt}\hat{p}_H(t)&=-\frac{\partial}{\partial \hat{q}_H}\hat{H}_H
\end{align}
\)
であり、
\(
\begin{align}
i\hbar\frac{d}{dt}\hat{q}_H(t)&=\left[\hat{q}_H(t), \hat{H}_H\right] \\
&= i\hbar \frac{\hat{p}_H}{m} \\
\frac{d}{dt}\hat{q}_H(t)&=\frac{\partial}{\partial \hat{p}_H}\hat{H}_H
\end{align}
\)
となります。
この二つの式は、古典力学のハミルトンの運動方程式に酷似していますよね。ここからHeisenberg描像が量子-古典対応を成す、という所以になるわけです。

注意として、Heisenberg描像は、量子-古典対応を成しますが、演算子それ自身を測定することなどできないのです。あくまで期待値と対応するだけです。
また、Heisenberg描像は古典力学への回帰を見出し、エーレンファストの定理と関連します。


続いて相互作用描像です。
系のハミルトニアン\(\hat{H}\)を\(\hat{H}=\hat{H}_0+\hat{V}\)と分けます。
そして、\(\hat{H}_0\)の時間発展は分かっている時、Interaction描像の波動関数\(\Psi_I(t)\)は
\(
\begin{align}
\Psi_I(t) = e^{i\frac{\hat{H_0}}{\hbar}t}e^{-i\frac{\hat{H}}{\hbar}t}\Psi_S(0)
\end{align}
\)
でした。じっくり見ていきましょう。
例を考えます。
\(
\displaystyle \hat{H}=\hat{H}_0+V(x)=-\frac{\hbar^2}{2m}\nabla^2+V(x)
\)
で、ポテンシャル\(V(x)\)が単調減少で図のような山なりの波形をしている場合を考えます。
Interaction描像イラスト_c
初期状態\(\Psi_S(0)\)があったとすると時間経過すると、その波動関数の形は広がりながら右へ移動します。
Interaction描像では、この、広がる、という動きと、右へ移動する、という動きが合わさったと考えます。
広がる動きは、ポテンシャルが無いときの波束の動きです。ポテンシャルがない時、右に動くことはしません。
右への動きは、ポテンシャルしか無いときの波束の動きです。質点を考えれば、ポテンシャルの山を転がり、右へ動きます。

Interaction描像の波動関数\(\Psi_I(t)\)は既に分かっている広がる動き(\(\hat{H}_0=-\frac{\hbar^2}{2m}\nabla^2\)の部分)を取り除き、波束が右に動く描像(\(V(x)\)の部分)だけを切り抜くのです。

言葉で言えば、Interaction描像は、
\(t’\)秒後の\(I\)描像における波動関数は、\(t’\)秒後の\(S\)描像における波動関数に対して、\(t’\)秒間の\(\hat{H}_0\)による逆方向の時間発展を行えばよい、ということです。

あくまでもイメージなので、細かな議論はご了承を。

参考文献

David J. Tannor著、山下晃一ほか訳『入門 量子ダイナミクス(上)』(2011), p.231~236

演算子の種類と説明

\(\hat{A}\)がエルミート演算子ならば、\(e^{i\hat{A}}\)はユニタリー演算子である。

この文の意味が分かる人はこのページはいらないと思います。


前提として、一度勉強した人が思い出す、という体を想定しています。
詳しくブラケット表記であるとか、正しく知りたい人は、
J. J. Sakurai著 桜井 明夫訳『現代の量子力学〈上〉』 (物理学叢書) (1989)



David J.Tannor著 山下晃一訳 『入門 量子ダイナミクス 時間依存の量子力学を中心に(上)』 化学同人
などを参考にしてください。このページの参考先もこの2つです。

[adsense1]

エルミート演算子(Hermite Operator)


エルミート演算子は自己随伴演算子とも呼ばれます。

  • ディラックのブラ・ケット表記で考えます。
    演算子\(\hat{A}\)の状態\(u\)と状態vによる内積を\(\langle u|\hat{A}|v\rangle \)と、表現します。
    関数による表現では、
    \(
    \displaystyle \langle u|\hat{A}|v\rangle =\int u^* \hat{A} v dx
    \)

    となるわけです。この時、
    \(
    \langle u|\hat{A}|v\rangle^*=\langle v|\hat{A}^{\dagger}|u\rangle
    \)

    を関係を満たす演算子を随伴演算子と呼び、\(\hat{A}^{\dagger}\)と表現します(\(\hat{A}\)のエルミート共役を取る、とも言います)。

    状態による表記では、
    \(
    \displaystyle \hat{A}|v\rangle =\lambda |v\rangle
    \)

    に対してエルミート共役を取ると、
    \(
    \displaystyle \langle v|\hat{A}^{\dagger} =\lambda^* \langle v|
    \)

    と書けます。

    そして、たまたま\(\hat{A}^{\dagger}\)が\(\hat{A}\)に等しい場合、すなわち、
    \(
    \hat{A}^{\dagger}=\hat{A}
    \)

    を満たすとき、演算子\(\hat{A}\)はエルミート演算子(自己随伴演算子)だ、と呼びます。

  • エルミート演算子の持つ性質
    1. エルミート演算子の固有値は実数である。
      \(
      \hat{A}|v\rangle=\lambda |v\rangle
      \)

      左から\(v\)を掛けて、内積を取り、式変形します。式変形は2通り考えられて、

      \(
      \begin{eqnarray}
      \left\{
      \begin{aligned}
      \langle v|\hat{A}|v\rangle&=\langle v|\lambda |v\rangle=\lambda\langle v|v\rangle \\
      \langle v|\hat{A}|v\rangle&=\langle v|\hat{A}^{\dagger}|v\rangle=
      \langle v|\lambda^*|v\rangle=\lambda^*\langle v|v\rangle
      \end{aligned}
      \right .
      \end{eqnarray}
      \)

      となります。同じものから出発したので値は同じものになるはずです。なので
      \(\lambda=\lambda^*\)
      これを満たす\(\lambda\)は虚数部がゼロでなければなりません。
      よってエルミート演算子の固有値は実数である、となります。

    2. あるエルミート演算子が異なる2つの固有値を持つ場合、これらの固有値に対応する固有関数は互いに直交する。
      2つの固有値を\(\lambda_1, \lambda_2\)と書いて、
      それぞれの固有値に属する固有ベクトルを\(|v_1\rangle, |v_2\rangle\)と書くことにします。すなわち、
      \(
      \hat{A}|v_1\rangle=\lambda_1 |v_1\rangle \ ,\ \ \ \ \hat{A}|v_2\rangle=\lambda_2 |v_2\rangle
      \)

      であるとします。ここで\(\lambda_1\neq \lambda_2\)です。
      1番目の式に左から左から\(\langle v_2|\)を作用させて式変形します。式変形は2通り考えられて、
      \(
      \begin{eqnarray}
      \left\{
      \begin{aligned}
      \langle v_2|\hat{A} |v_1\rangle&=\langle v_2|\lambda|v_1\rangle=\lambda_1\langle v_2|v_1\rangle \\
      \langle v_2|\hat{A}|v_1\rangle&=\langle v_2|\hat{A}^{\dagger}|v_1\rangle=
      \lambda_2^*\langle v_2|v_1\rangle=\lambda_2\langle v_2|v_1\rangle
      \end{aligned}
      \right .
      \end{eqnarray}
      \)

      同じものから出発したので、
      \(
      \begin{align}
      \lambda_1\langle v_2|v_1\rangle=\lambda_2\langle v_2|v_1\rangle \\
      \rightarrow (\lambda_1-\lambda_2)\langle v_2|v_1\rangle=0
      \end{align}
      \)

      仮定より、\(\lambda_1\neq \lambda_2\)なので、\(\langle v_2|v_1\rangle=0\)になるほかありません。
      \(\langle v_2|v_1\rangle=0\)は内積がゼロ、すなわち直交である、と言っているので仮定は示されました。
  • ある状態\(\phi\)が、演算子\(A\)の固有値\(\lambda_i\)に属する固有状態\({v_i}\)の組で書かれるとき、
    すなわち、
    \(
    \displaystyle |\phi\rangle=\sum_ia_i|v_i\rangle
    \)

    で書かれるとき、
    \(
    \displaystyle \frac{\langle\phi|\hat{A}|\phi\rangle}{\langle\phi|\phi\rangle}
    =\sum_i p_i \lambda_i,\ \ \ p_i\equiv \frac{|a_i|^2}{\sum_i|a_i|^2}\ \ \cdots (a)
    \)

  • 量子力学の中心的教義は以下の3つを主張しています。
      (i)     全ての観測量にはエルミート演算子\(\hat{A}\)が結び付けられる。
      (ii)   \(\hat{A}\)に属する観測量の測定について、起こりうる結果は\(A\)の固有値\(\{A_i\}\)のみ。
      (iii)  系が状態\(|\phi\rangle=\sum_ia_i|v_i\rangle\)にあれば、
      \(\lambda_i\)の値を得る確率は\((a)\)で与えた\(p_i\)で与えられる。
      また、\(\displaystyle \sum_ip_i\lambda_i\)は\(\hat{A}\)を測定した平均値、もしくは期待値である。
  • おまけ
    随伴行列\(A^{\dagger}\)は、\(\hat{A}\)の転置行列の複素共役で与えられます。
    \(
    (A_{ij})^{\dagger}=A^*_{ji}
    \)

    特に、エルミート行列の場合、\(A^{\dagger}=A^*\)なので、
    \(
    A_{ij}=A^*_{ji}
    \)

    対角要素については\(A_{ii}=A^*_{ii}\)が成り立つので、エルミート行列の対角要素は実数でなければならないことがわかります。

逆演算子


\(\hat{A}\)の逆\(\hat{A}^{-1}\)を意味します。

  • 定義

    \(\hat{A}|u\rangle=|v\rangle\ \ \ \cdots (1)\)
    のとき、逆演算子\(\hat{A}^{-1}\)は
    \(|u\rangle=\hat{A}^{-1}|v\rangle\ \ \ \cdots (2)\)
    と定義されます。

  • 性質

    (1)の左から\(\hat{A}^{-1}\)を作用させると、
    \(\hat{A}^{-1}\hat{A}|u\rangle=\hat{A}^{-1}|v\rangle\ \ \ \cdots (1-1)\)
    (2)の左から\(\hat{A}\)を作用させると、
    \(\hat{A}\hat{A}^{-1}|u\rangle=\hat{A}|v\rangle\ \ \ \cdots (2-1)\)

    (1)と(2-1), (2)と(1-1)を見比べれば、明らかに
    \(\hat{A}\hat{A}^{-1}=\hat{A}^{-1}\hat{A}=\mathbf{1}\)
    となります。

  • 逆演算子の存在
    全ての演算子に逆演算子があるわけではありません。以下の通り、逆が存在しない場合があることを示せます。
    演算子\(\hat{A}\)が2つの異なる初期ベクトルを同じ終ベクトルに写す状況を考えます。式で表せば、
    \(
    \begin{eqnarray}
    \left\{
    \begin{aligned}
    \hat{A}|u_1\rangle&=|v\rangle \ \ \ (3)\\
    \hat{A}|u_2\rangle&=|v\rangle \ \ \ (4)
    \end{aligned}
    \right.
    \end{eqnarray}
    \)
    ここで、
    \(\hat{A}^{-1}|v\rangle\)を考えた時、それを\(|u_1\rangle\)か、\(|u_2\rangle\)かを決める術はありません。
    よって逆が存在しないことになります。
    また、 \((4)-(3)\)を行うと、
    \(
    (4)-(3)=\hat{A}(|u_1\rangle-|u_2\rangle)=\mathbf{0}
    \)
    となります。この意味は、\(\hat{A}\)は\(\mathbf{0}\)ではない、いくつかのベクトルを消去する、ということを表現しています。

[adsense2]

ユニタリー演算子


ユニタリー演算子は演算子\(\hat{A}\)の逆演算子\(\hat{A}^{-1}\)が
\(\hat{A}\)のエルミート共役\(\hat{A}^{\dagger}\)に等しいとき、その演算子はユニタリー演算子だ
、と定義されます。すなわち、
\(
\hat{A}^{-1}=\hat{A}^{\dagger}
\)
を満たすとき、と定義されます。
また、別の表現では
\(
\hat{A}^{\dagger}\hat{A}=\hat{A}\hat{A}^{\dagger}=\mathbf{1}
\)
という場合もありますが同じことです。
ユニタリー演算子はよく、\(\hat{U}\)という表記がされます。

  • ユニタリー演算子の性質
    1. ユニタリー演算子はノルムを保存する。
      ユニタリー演算子が状態\(|u\rangle\)に作用した場合を考えます。この時、ノルムは自身の内積を取ればいいので、
      \(\langle u|\hat{A}^{\dagger}\)と\(\hat{A}|u\rangle\)を作用させればノルムになります。故に、
      \(
      \langle u|\hat{A}^{\dagger}\hat{A}|u\rangle=\langle u|u\rangle
      \)
      であり、ノルムは変わりません。
    2. ユニタリー演算子の固有値は絶対値\(\mathbf{1}\)を必ず含む。
      あるユニタリー演算子を\(\hat{U}\)と書き、固有値問題を
      \(
      \hat{U}|v\rangle=\lambda |v\rangle\ \ \ (5)
      \)
      と書きます。

      両辺のエルミート共役をとって、
      \(
      \displaystyle \langle v|\hat{U}^{\dagger} =\lambda^* \langle v|
      \)

      ユニタリー演算子の性質を使うと、
      \(
      \displaystyle \langle v|\hat{U}^{-1} =\lambda^* \langle v|
      \)

      右から\(\hat{U}\)を作用させて、
      \(
      \begin{align}
      \displaystyle \langle v|\hat{U}^{-1}\hat{U} &=\lambda^* \langle v|\hat{U} \\
      \displaystyle \langle v|\hat{U} &=\frac{1}{\lambda^*}\langle v| \ \ \ \ (6)
      \end{align}
      \)

      (5)に左から\(\langle v|\)を作用させると、
      \(
      \langle v|\hat{U}|v\rangle=\langle v|\lambda |v\rangle=\lambda\langle v |v\rangle\ \ \ (7)
      \)

      であり、また、内積を以下のように変形し、(6)を使うと、
      \(
      \displaystyle \langle v|\hat{U}|v\rangle=\frac{1}{\lambda^*}\langle v|v\rangle\ \ \ (8)
      \)

      従って、式(7),(8)は同じものから出発したので等しいはずで、
      \(
      \begin{align}
      \lambda\langle v |v\rangle&=\frac{1}{\lambda^*}\langle v|v\rangle \\
      &\rightarrow |\lambda|^2=1
      &\rightarrow |\lambda|=1
      \end{align}
      \)
      となるため、ユニタリー演算子の固有値は必ず絶対値1を含みます
      ※これは、\(e^{i\theta},\ \ \ \theta\)は実数、であればいいと言っています。1である必要性はありません。

    3. 異なる固有値を持つユニタリー演算子の固有状態は直交する
      異なる2つの固有値を\(\lambda_1, \lambda_2\)と書き、
      それぞれの固有値に属する固有ベクトルを\(|v_1\rangle, |v_2\rangle\)と書くことにします。
      \(|v_2\rangle\)と\(|v_1\rangle\)による内積をそれぞれ考えると、
      \(
      \langle v_2|\hat{U}|v_1\rangle=\langle v_2|\lambda |v_1\rangle=\lambda_1\langle v_2 |v_1\rangle\ \ \ (9)
      \)

      と変形できるし、
      \(
      \langle v_2|\hat{U}|v_1\rangle=\frac{1}{\lambda_2^*}\langle v_2|v_1\rangle=\lambda_2\langle v_2|v_1\rangle \ \ \ (10)
      \)

      とも変形できます。最後の変形は2.の性質、絶対値1を持つことを利用しています。
      2つの固有値\(\lambda_1, \lambda_2\)は違う値を仮定したので、(9)=(10)が成り立つためには
      \(\langle v_2|v_1\rangle=0\)
      でなければなりません。よって、ユニタリー演算子の異なる固有値に属する固有状態は直交していなければなりません。

ユニタリー演算子とエルミート演算子


エルミート演算子からユニタリー演算子を作る方法を示します。
この方法は運動量演算子の導出でも用いるので、覚えておいて損はないかと思います。

\(\hat{A}\)がエルミート演算子ならば、\(e^{i\hat{A}}\)はユニタリー演算子である。
演算子\(e^{i\hat{A}}\)の逆行列を考えて、それがエルミート共役に等しくなるか、見てみます。
定数に対するエルミート共役は単なる複素共役、\(\hat{U}=\hat{U}^{\dagger}\)であることを利用すると、
\(
\begin{align}
\left(e^{i\hat{A}}\right)^{-1}&=e^{-i\hat{A}} \\
&=1+(-i\hat{A})+\frac{(-i\hat{A})^2}{2!}+\cdots \\
&=1+(i\hat{A})^{\dagger}+\frac{\left\{(i\hat{A})^{\dagger}\right\}^2}{2!}+\cdots \\
&=\left(e^{i\hat{A}}\right)^{\dagger}
\end{align}
\)
となり、ユニタリー演算子の定義\(\hat{U}^{-1}=\hat{U}^{\dagger}\)を満たしていることがわかります。

逆行列とユニタリー行列


行列表記と演算子表記は同じものです。
量子力学では、ユニタリー行列の逆行列に関心があります。数式ならば、
\(\hat{U}^{-1}_{ij}=\hat{U}^{\dagger}_{ij}=\hat{U}^{*}_{ji}\)
ということです。

ユニタリー行列の性質の一つに、ユニタリー行列の列ベクトルは正規直交ベクトルである、ことを示しましょう。
逆行列との積は\(\mathbf{1}\)に等しいので
\(
(\hat{U}^{-1}\hat{U})_{ik}=\delta_{ik}
\)
です。これを踏まえ、ユニタリー演算子の性質を使って、
\(
\begin{align}
(\hat{U}^{\dagger}\hat{U})_{ik}&=\sum_j\hat{U}_{ij}^{\dagger}\hat{U}_{jk} \\
&=\sum_j\hat{U}_{ji}^{*}\hat{U}_{jk}=\delta_{ik}
\end{align}
\)
という結果が得られます。最後の式から、行列\(U\)の2つの列ベクトルの内積、これが\(\delta_{ik}\)に等しいことがわかります。
故にユニタリー行列の列ベクトルは正規直交ベクトルであることが示されました。

ちなみに、逆行列を得るための一般的な手続きは、
①  行列を対角形に変形

②  対角要素を逆数に

③  逆変換
という流れで行われます。

時間発展演算子の導出

量子力学における時間発展演算子\(\displaystyle \hat{U}_{(t)}=e^{-i\frac{\hat{H}}{\hbar}t}\)の導出です。
これは、ハミルトニアンは時間依存しない場合に限ります。時間依存するときは時間順序積という概念が出てきます。


シュレディンガー方程式
\(
\begin{align}
i\hbar\frac{\partial}{\partial t}\psi_{(x,t)}=\hat{H}\psi_{(x,t)}
\end{align}
\)
は既知のものとして進めます。

形式的な導出でよく説明されるのは以下の手順です。

シュレディンガー方程式の両辺を\(i\hbar\)で割って、更に波動関数\(\psi_{(x,t)}\)で割り両辺を時刻\(0\sim t\)まで積分します。
すなわち、
\(
\begin{align}
\int_{\psi_{(0)}}^{\psi_{(t)}}\frac{d\psi}{\psi}&=\int_0^t\frac{\hat{H}}{i\hbar}dt^{\prime} \\
\ln\frac{\psi_{(t)}}{\psi_{(0)}}&=\frac{-i}{\hbar}\hat{H}t \\
\end{align}
\)

なので
\(
\displaystyle \psi_{(x,t)}=e^{-i\frac{\hat{H}}{\hbar}t}\psi_{(x,0)}
\)

証明終了,,

(;’;゚;ж;゚;`;)ブホォッ
(; ^ω^)は…

何で波動関数で割ってくれちゃってるんですか?ハミルトニアンは演算子ですよ。形式的にしてもひどくない?

ということで、ちゃんと求めましょう。結果は↑のものと同じになります。不思議ですね。


ハミルトニアンが時間依存しないという条件の下求めます。
まず、時間依存するシュレディンガー方程式より、
\(
\displaystyle i\hbar\frac{\partial}{\partial t}\psi_{(x,t)}=\hat{H}\psi_{(x,t)}
\)

となります。無限小時間\(\Delta t\)に対して、シュレディンガー方程式は、
\(
\displaystyle i\hbar\lim_{\Delta t\rightarrow 0}\frac{\psi_{(x,t+\Delta t)}-\psi_{(x,t)}}{\Delta t}=\hat{H}\psi_{(x,t)}
\)

です。以降\(\lim\)は省略します。

式を変形して、
\(
\displaystyle \psi_{(x,t+\Delta t)}=\left(1-i\frac{\hat{H}}{\hbar}\Delta t\right)\psi_{(x,t)}
\)

また、もう\(\Delta t\)だけ時間を進めると、
\(
\displaystyle \psi_{(x,t+2\Delta t)}=\left(1-i\frac{\hat{H}}{\hbar}\Delta t\right)^2\psi_{(x,t)}
\)

という結果が得られます。

ここで、\(\Delta t\)をN回作用させることを考えます。
すなわち、\(t^{\prime}=N\Delta t\)とおき、\(\Delta t=\frac{t^{\prime}}{N}\)として考えれば、任意の時間\(t^{\prime}\)に対して、
\(
\displaystyle \psi_{(x,t+t^{\prime})}=\left(1-i\frac{\hat{H}}{\hbar}t^{\prime}\frac{1}{N}\right)^N\psi_{(x,t)}
\)

という式が成立します。

無限回、微小区間\(\Delta t\)を動かす操作を考えればいいので、\(N\rightarrow \infty\)として考えれば、
\(
\displaystyle \psi_{(x,t+t^{\prime})}=\lim_{N\rightarrow \infty}\left(1-i\frac{\hat{H}}{\hbar}t^{\prime}\frac{1}{N}\right)^N\psi_{(x,t)}
\)

公式
\(
\displaystyle \lim_{x\rightarrow \pm\infty}\left(1+\frac{a}{x}\right)^x=e^a
\)

より、
\(
\displaystyle \psi_{(x,t+t^{\prime})}=e^{-i\frac{\hat{H}}{\hbar}t^{\prime}}\psi_{(x,t)}
\)

\(t=0\)と置き、\(t^{\prime}=t\)と文字を置き換えれば、
\(
\displaystyle \psi_{(x,t)}=e^{-i\frac{\hat{H}}{\hbar}t}\psi_{(x,0)}
\)

となり、ちゃんと時間発展演算子が導けました。めでたしめでたし。


ハミルトニアンが時間依存する場合、
\(
\displaystyle i\hbar\frac{\partial}{\partial t}\psi_{(x,t)}=\hat{H}_{(t)}\psi_{(x,t)}
\)

となります。無限小時間\(\Delta t\)に対して、シュレディンガー方程式は、
\(
\displaystyle i\hbar\lim_{\Delta t\rightarrow 0}\frac{\psi_{(x,t+\Delta t)}-\psi_{(x,t)}}{\Delta t}=\hat{H}_{(t)}\psi_{(x,t)}
\)

次の時刻では
\(
\displaystyle \psi_{(x,t+2\Delta t)}=
\left(1-i\frac{\hat{H}_{(t+\Delta t)}}{\hbar}\Delta t\right)\left(1-i\frac{\hat{H}_{(t)}}{\hbar}\Delta t\right)\psi_{(x,t)}
\)

となります。2乗にはなってくれません。
と、どんどん作用させていくわけです。時間依存しない時と明らかに違ったものになりますが、詳しくは次の機会のお話で。

運動量演算子の導出

量子力学の運動量演算子\(\hat{p}\)が
\(
\displaystyle \hat{p}=-i\hbar \frac{d}{d x}
\)

であらわされることを導出します。
ここでの”導出”は運動量演算子として妥当なものを導出する、と言った方がいいかもしれません。

平行移動演算子\(\hat{T}\)を出発点とします。
この平行移動演算子はある波動関数\(\psi_{(x)}\)を平行移動させる演算子で、これを作用させると
\(
\hat{T}_{(\Delta x)}\psi_{(x)}=\psi_{(x+\Delta x)}
\)

となる演算子です。

よく説明される、シュレディンガー方程式の平面波解からの出発はしません

この\(\hat{T}\)の持つであろう性質を考え、その特性から\(\hat{T}\)の具体的な形を推定し、運動量演算子を導きます。

平行移動演算子\(\hat{T}\)が満たすべき性質


当たり前と思われる性質から、平行移動演算子に関して以下の4つが言えます。

  1. 波動関数\(\psi_{(x)}\)が1に規格化済みであれば、平行移動した波動関数\(\psi_{(x+\Delta x)}\)もまた規格化されているはずである。
    すなわち、
    \(
    \begin{align}
    \langle\psi_{(x)}|\psi_{(x)}\rangle &= \langle\psi_{(x)}|\hat{T}^{\dagger}_{(\Delta x)}\hat{T}_{(\Delta x)}|\psi_{(x)}\rangle \\
    &= \langle\psi_{(x+\Delta x)}|\psi_{(x+\Delta x)}\rangle \\
    &\rightarrow \hat{T}^{\dagger}_{(\Delta x)}\hat{T}_{(\Delta x)}=\mathbf{1}
    \end{align}
    \)
    となり、3本目の式から\(\hat{T}\)はユニタリー演算子であることがわかります。
  2. \(\Delta x\)進めた後、\(\Delta x^{\prime}\)を進める操作は\(\Delta x + \Delta x^{\prime}\)進める操作に等しいはずである。
    すなわち、
    \(
    \hat{T}_{(\Delta x^{\prime})}\hat{T}_{(\Delta x)}=\hat{T}_{(\Delta x+\Delta x^{\prime})}
    \)
  3. 負の方向への平行移動\(\hat{T}_{(-\Delta x)}\)は正の方向への平行移動\(\hat{T}_{(\Delta x)}\)の逆のはずである。
    \(
    \hat{T}_{(-\Delta x)}=\hat{T}^{-1}_{(\Delta x)}
    \)
  4. \(\Delta x\)が0のとき、恒等操作なはずである。
    \(
    \begin{align}
    \hat{T}_{(0)}\psi_{(x)}&=\psi_{(x)} \\
    &\rightarrow \hat{T}_{(0)}=\mathbf{1}
    \end{align}
    \)

平行移動演算子の具体的な形


1,より、\(\hat{T}_{(\Delta x)}\)はユニタリー演算子である事が分かりました。ユニタリー演算子を作る1つの方法として、エルミート演算子\(\hat{A}_{(\Delta x)}\)を用いて、
\(
\hat{T}_{(\Delta x)}=e^{i\hat{A}_{(\Delta x)}}
\)

と置けば、\(\hat{T}_{(\Delta x)}\)はユニタリー演算子となります(エルミート演算子とユニタリー演算子の性質)。
この仮定の下、
\(
\hat{T}_{(\Delta x)}\psi_{(x)}=\psi_{(x+\Delta x)}
\)

に代入して、
\(
e^{i\hat{A}_{(\Delta x)}}\psi_{(x)}=\psi_{(x+\Delta x)}
\)

無限小移動を考えて\(\Delta_{(x)}\rightarrow 0\)と約束すれば、
\(
(1+i\hat{A}_{(\Delta x)})\psi_{(x)}=\psi_{(x+\Delta x)}
\)

変形して、
\(
\psi_{(x+\Delta x)}-\psi_{(x)}=i\hat{A}_{(\Delta x)}\psi_{(x)}
\)

辺々を\(\Delta x\)で割れば、
\(
\begin{align}
\displaystyle \lim_{\Delta x\rightarrow 0}\frac{\psi_{(x+\Delta x)}-\psi_{(x)}}{\Delta x} = \lim_{\Delta x\rightarrow 0} i\frac{\hat{A}_{(\Delta x)}}{\Delta x}\psi_{(x)}
\end{align}…(i)
\)

となります。左辺は位置\(x\)における波動関数の傾きです。
ここで右辺を見ます。\(\hat{A}_{(\Delta x)}\)は\(\Delta x\)のなんらかの関数であるはずですが、\(\hat{A}_{(\Delta x)}\)が分母の\(\Delta x\)と打ち消す形でなければ0、もしくは発散する事になります。
この場合、波動関数の傾きが到る点で0になるということは、全空間で定数ということになり非物理的な解です。また、発散してしまうのであれば波動関数が至る所で発散してしまい、これまた日物理的です。

具体的に、もしも\(\hat{A}_{(\Delta x)}=(\Delta x)^2\)だったら、
\(
\displaystyle \lim_{\Delta x\rightarrow 0} \frac{(\Delta x)^2}{\Delta x}=\lim_{\Delta x\rightarrow 0} \Delta x =0
\)

であるし、もしも\(\hat{A}_{(\Delta x)}=(\Delta x)^{1/2}\)だったら
\(
\displaystyle \lim_{\Delta x\rightarrow 0} \frac{(\Delta x)^{1/2}}{\Delta x}=\lim_{\Delta x\rightarrow 0} \frac{1}{\sqrt{\Delta x}} =\infty
\)

となります。
すなわち、言いたいことは、\(\hat{A}_{(\Delta x)}\)は\(\Delta x\)に関して1次であるべきで、
\(
\hat{A}_{(\Delta x)}=\hat{B}\cdot \Delta x
\)…(ii)
と書けるはずです。ここで\(\hat{B}\)は\(\Delta x\)に依らない演算子です(下に補足説明あり)。

よって、式(i)は\(\Delta x\rightarrow 0\)のとき、
\(
\begin{align}
\displaystyle \lim_{\Delta x\rightarrow 0}\frac{\psi_{(x+\Delta x)}-\psi_{(x)}}{\Delta x} &= \lim_{\Delta x\rightarrow 0} i\frac{\hat{A}_{(\Delta x)}}{\Delta x}\psi_{(x)} \\
\frac{d \psi_{(x)}}{dx}=i\hat{B}\psi_{(x)}
\end{align}…(iii)
\)

と書けるため、
\(
\psi_{(x)}=e^{i\hat{B}\cdot x}\psi_{(0)}
\)

となります。(この式で右辺の\(\psi_{(0)}\)が0である必要はなく、定数であればいいんです。)

平行移動演算子と運動量演算子との関係


次元について考えましょう!
今、\(\hat{T}_{(\Delta x)}=e^{i\hat{B}\cdot \Delta x}\)であり、\(\Delta x\)の次元は\(\mathrm{[m]}\)であるため、\(\hat{B}\)の次元は\(\mathrm{[m^{-1}]}\)でなければなりません。よって、\(\hat{B}\)は波数の次元を持つ演算子であると考えられるため、\(\hat{B}\)を\(c\hat{k}\)と記述することにします。ここで、\(c\)は無次元の定数です。
式(iii)より、
\(
\displaystyle \frac{d \psi_{(x)}}{dx}=ic\hat{k}\psi_{(x)}
\)

辺々に\(-i\hbar\)を掛けると、
\(
\displaystyle -i\hbar \frac{d}{dx} \psi_{(x)}=c\hbar \hat{k}\psi_{(x)}
\)
…(iv)

!!!

\(p=\hbar k\)は運動量を表すものでした。よって,\(\hat{p}=\hbar \hat{k}\)と書けば、式(iv)より
\(
\begin{align}
\hat{p}\psi_{(x)}&=\frac{1}{c}\left[-i\hbar\frac{d}{d x}\right] \psi_{(x)} \\
\end{align}
\)
となります。よって運動量演算子は
\(
\begin{align}
\hat{p}\propto -i\hbar\frac{d}{d x} \\
\end{align}
\)
となります。この考えからは定数倍を含めてしまうので、比例する、という事しか言えません。

なぜ決まらないのか考えてみますと、時間の依存性に関する考え方が式のどこにも含んでいないからです。
時間の単位が決まらないと速度の定義が出来ないわけで、これ以上進めることが出来ないのです。

各成分について言えるので、多次元の場合では
\(
\hat{p}_x\propto -i\hbar\frac{\partial}{\partial x}
\)
としても同じことです。
申し訳ないですが、数学的に厳密か?は保証しません。

補足説明


果たして運動量演算子として考えた\(e^{i\hat{B}\cdot \Delta x}\)は\(\hat{T}\)の特性1.~4.を満たすでしょうか?

  1. \(
    \left(e^{i\hat{B}\cdot \Delta x}\right)^{\dagger} \left(e^{i\hat{B}\cdot \Delta x}\right)=e^{-i\hat{B}^{\dagger}\cdot \Delta x}e^{i\hat{B}\cdot \Delta x}=\mathbf{1}
    \)
    ここで\(\hat{B}\)はエルミート演算子を考えているので、\(\hat{B}^{\dagger}=\hat{B}\)です。
    \(
    e^{-i\hat{B}^{\dagger}\cdot \Delta x}e^{i\hat{B}\cdot \Delta x}=\mathbf{1}
    \)
    ok!
  2. \(
    \hat{T}_{(\Delta x^{\prime})}\hat{T}_{(\Delta x)}=\hat{T}_{(\Delta x+\Delta x^{\prime})}
    \)
    か?
    \(
    (\mbox{左辺})=e^{i\hat{B}\cdot \Delta x^{\prime}} e^{i\hat{B}\cdot \Delta x}=e^{i\hat{B}\cdot (\Delta x^{\prime}+\Delta x)}
    \)
    ok!
  3. \(
    \hat{T}_{(-\Delta x)}=\hat{T}^{-1}_{(\Delta x)}
    \)
    か?
    両辺の左から\(\hat{T}_(\Delta x)\)を掛けて、
    \(
    \begin{align}
    &\hat{T}_{(\Delta x)}\hat{T}_{(-\Delta x)}=\mathbf{1} \\
    &= e^{i\hat{B}\cdot \Delta x}e^{i\hat{B}\cdot (-\Delta x)}=e^{i\hat{B}\cdot 0}=\mathbf{1}
    \end{align}
    \)

    ok!
  4. \(e^{i\hat{B}\cdot 0}=1\)
    ok!

よって、4つすべてを満たすので、\(\hat{T}_{(\Delta x)}=e^{i\hat{B}\cdot \Delta x}\)は平行移動演算子として適当であると考えることができるのです。

ラグランジュの未定乗数法

忘れやすいラグランジュの未定乗数法のメモです。
一通り学んだ人が使い方を思い出す、という状況を想定しています。

変数が独立な場合


3変数x,y,zが独立(xが変化してもy,zは変化しない、\(\vec{x}\cdot\vec{y}=0\) (y,zも同様))で、その関数\(f(x,y,z)\)の極値は
\(
\displaystyle \frac{\partial f}{\partial x}=0,\ \ \frac{\partial f}{\partial y}=0,\ \ \frac{\partial f}{\partial z}=0 \ \ \cdots (1)
\)

を連立させて解くことで得られます。

変数が独立ではない(従属な)場合


変数x,y,zの間に関係式
\(
g(x,y,z)=c, \ \mbox{$c$は定数} \ \ \cdots (2)
\)

という条件がある場合、

  1. 式(2)が(例えば)zについて解けるならば、\(f(x,y,z(x,y))\)として2変数\(x,y\)の極値問題として解ける。
  2. \(z=z(x,y)\)の形に書けない場合 →ラグランジュの未定乗数法を使う
  1.  の場合、”関数\(f(x,y,z)\)が極値をとる”、とは
    \(
    \displaystyle df=\frac{\partial f}{\partial x}dx+\frac{\partial f}{\partial y}dy+\frac{\partial f}{\partial z}dz=0 \ \ \cdots (3)
    \)

    である点(極値点)である。
    →極値点から\(x,y,z\)を任意の微小量\(dx,dy,dz\)だけ変化させても関数\(f(x,y,z)\)の変化分である\(df\)は1次の範囲でゼロです。
    故に任意の\(dx,dy,dz\)について(3)が成立する、よって(1)が導かれることになります。
  2.  の場合、\(dx,dy,dz\)は独立に選ぶことができません。その取り方は条件(2)に従います。
    極値点まわりで(2)が成立しているならば、
    \(
    g(x+dx,y+dy,z+dz)=g(x,y,z)\ \ \cdots (4)
    \)

    を満たすような\(dx,dy,dz\)の変化しか許されないことになります。この条件から\(dx,dy,dz\)の動かし方は、
    \(
    \displaystyle \frac{\partial g}{\partial x}dx+\frac{\partial g}{\partial y}dy+\frac{\partial g}{\partial z}dz=0 \ \ \cdots (5)
    \)

    に制限されます。
    条件(5)を\(dz\)について変形すると、
    \(
    \displaystyle dz=-\frac{\frac{\partial g}{\partial x}dx+\frac{\partial g}{\partial y}dy}{\frac{\partial g}{\partial z}} \ \ \cdots (6)
    \)

    となります。式(3)へ式(6)を代入すると

    \(
    \begin{align}
    \displaystyle df &=\left( \frac{\partial f}{\partial x}-\frac{\frac{\partial g}{\partial x}}{\frac{\partial g}{\partial z}}\frac{\partial f}{\partial z}\right)dx
    +\left( \frac{\partial f}{\partial y}-\frac{\frac{\partial g}{\partial y}}{\frac{\partial g}{\partial z}}\frac{\partial f}{\partial z}\right)dy=0 \\
    &=\left( \frac{\partial f}{\partial x}-\lambda\frac{\partial g}{\partial x}\right)dx
    +\left( \frac{\partial f}{\partial y}-\lambda\frac{\partial g}{\partial y}\right)dy=0 \ \ \cdots (7)
    \end{align}
    \)

    ここで
    \(
    \displaystyle \lambda=\frac{\frac{\partial f}{\partial z}}{\frac{\partial g}{\partial z}}\ \ \cdots (8)
    \)

    と置きました。この\(\lambda\)はラグランジュの未定乗数と呼ばれます。
    未定乗数という所以は、この\(\lambda\)をあらわに決める必要はなく、決まらない定数のままでも極値点を求めることができるという事を表しています。
    今、\(dx,dy\)は独立であるので(※1)、その係数は\(0\)になるはずです。故に、式(7)と式(8)より、

    \(
    \begin{eqnarray}
    \left\{
    \begin{aligned}
    \frac{\partial f}{\partial x}-\lambda\frac{\partial g}{\partial x}&=0 \\
    \frac{\partial f}{\partial y}-\lambda\frac{\partial g}{\partial y}&=0 \\
    \frac{\partial f}{\partial z}-\lambda\frac{\partial g}{\partial z}&=0
    \end{aligned}
    \right.
    \end{eqnarray}
    \)

    が導けます。変形をすれば、条件式(2)も含めて、

    \(
    \begin{eqnarray}
    \left\{
    \begin{aligned}
    \frac{\partial}{\partial x}\left(f-\lambda g\right)&=0 \\
    \frac{\partial}{\partial y}\left(f-\lambda g\right)&=0 \\
    \frac{\partial}{\partial z}\left(f-\lambda g\right)&=0 \\
    g(x,y,z)&=c
    \end{aligned}
    \right.
    \end{eqnarray}
    \ \ \ \cdots (9)
    \)

    と書くことができます。未知の変数は\(x,y,z,\lambda\)の4つで、方程式は4本なので解くことができます。
    この式が言うことは、束縛条件\(g(x,y,z)=c\)があった場合、関数\(f-\lambda g\)を考えて、その極値を求めればよいことを表しています。

[adsense1]

まとめ


条件\(g(x,y,z)=c\)がある関数f(x,y,z)の極値問題は、
\(
\tilde{f}=f-\lambda g \ \ \cdots (10)
\)

という新たな関数\(\tilde{f}\)を考えるとx,y,zが独立に変化するものと考えて\(\tilde{f}(x,y,z)\)の極値問題を考えればよい、となります。

例題 ~楕円に内接する長方形の面積の最大値を求める~


楕円の方程式は
\(
\displaystyle \frac{x^2}{a^2}+\frac{y^2}{b^2}=1
\)

であり、この方程式の許す\(x,y\)を満たしながら、内接する長方形の面積
\(S(x,y)=4xy\)
を最大にする\(x,y\)を求めます。

楕円面積

これは、関数\(f(x,y)=4xy\)の極値を\(\displaystyle g(x,y)=\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\)という条件下で解く、という意味になります。
まず、\(\tilde{S}\)を式(10)より求めます。
\(
\begin{align}
\tilde{S}&=S-\lambda g \\
&=4xy-\lambda\left(\frac{x^2}{a^2}+\frac{y^2}{b^2}\right)
\end{align}
\)
式(9)より、
\(
\begin{eqnarray}
\left\{
\begin{aligned}
\frac{\partial \tilde{S}}{\partial x}&=0 \\
\frac{\partial \tilde{S}}{\partial y}&=0
\end{aligned}
\right.
\end{eqnarray}
\)
を考えればいいので、
\(
\begin{eqnarray}
\left\{
\begin{aligned}
\frac{\partial \tilde{S}}{\partial x}=4y-\lambda \frac{2x}{a^2}&=0 \ \ \cdots (i)\\
\frac{\partial \tilde{S}}{\partial y}=4x-\lambda \frac{2y}{b^2}&=0 \ \ \cdots (ii)\\
\frac{x^2}{a^2}+\frac{y^2}{b^2}&=1 \ \ \cdots (iii)
\end{aligned}
\right.
\end{eqnarray}
\)
を満たす未知の変数\(x,y,\lambda\)が\(S\)の極値となっています。
(i)と(ii)より\(\lambda\)を消去すると
\(
\begin{align}
(i) &\rightarrow \lambda=\frac{2y}{x}a^2 \\
(ii) &\rightarrow 4x-\left(\frac{2y}{x}a^2\right)\frac{2y}{b^2}=0
\end{align}
\)
なので
\(
\displaystyle \frac{x^2}{a^2}=\frac{y^2}{b^2}
\)

(iii)に代入して
\(
\displaystyle 2\frac{x^2}{a^2}=1
\)

より
\(\displaystyle x=\pm\frac{a}{\sqrt{2}},\ \ y=\pm\frac{b}{\sqrt{2}}\)
のとき\(S(x,y)\)が極値を取ることがわかります。

ちなみに、この時の長方形の面積\(S_{max}\)は\(S_{max}=2ab\)であり、
これは楕円の面積\(S=\pi ab\)の\(\frac{2ab}{\pi ab}\sim 0.64\)となり、約64%を占めていることになります。

[adsense2]

※1
x,yが独立であるのは、x,y,zをつなぐ1本の条件式\(g(x,y,z)=c\)によって消え得る変数は1つだけであるためです。

参考


小野寺 嘉孝著 『物理のための応用数学』裳華房(1988)p.6~10

振り子

振り子の角度が小さいとき、また大きいときの振り子の取扱いです。
ラグランジアン\(L\)とハミルトニアン\(H\)から出発して運動方程式を求める方法を記述します。
座標は図のようにとります。
振り子のラグランジアンとハミルトニアン2
式で表せば、
\(
\begin{eqnarray}
\left\{
\begin{aligned}
x&=r \sin{\theta} \\
y&=-r \cos{\theta}
\end{aligned}
\right.
\end{eqnarray}
\)

であり、1階微分は
\(
\begin{eqnarray}
\left\{
\begin{aligned}
\dot{x}&=\dot{r} \sin{\theta}+r\dot{\theta}\cos{\theta} \\
\dot{y}&=\dot{r} \cos{\theta} -r\dot{\theta}\sin{\theta}
\end{aligned}
\right.
\end{eqnarray}
\)

です。

[adsense1]


ラグランジアン\(L\)から出発


上の座標の元、デカルト座標\((x,y)\)での振り子のラグランジアン\(L(x,\dot{x},y,\dot{y},t)\)は
運動エネルギー\(K=\frac{1}{2}m(\dot{x}^2+\dot{y}^2)\), ポテンシャルエネルギー\(V=V(x,\dot{x},y,\dot{y},t)\) より、
\(
\begin{align}
L(x,\dot{x},y,\dot{y},t)&=K-V \\
&=\frac{1}{2}m(\dot{x}^2+\dot{y}^2)-V(x,\dot{x},y,\dot{y},t)
\end{align}
\)
と書けます。新たな座標系でのラグランジアン\(L(r,\dot{r},\theta,\dot{\theta},t)\)は\(\begin{eqnarray}
\left\{
\begin{aligned}
x&=r \sin{\theta} \\
y&=-r \cos{\theta}
\end{aligned}
\right.
\end{eqnarray}\)に従い座標変換をし、
\(
\displaystyle L(r,\dot{r},\theta,\dot{\theta},t)=\frac{1}{2}m(\dot{r}^2+r^2\dot{\theta}^2)-V(r,\dot{r},\theta,\dot{\theta},t)
\)

とすることで新しい座標でのラグランジアンが得られます。
ここまでは一般的な話です。

今、もしも振り子をつないでいる棒が時間変化しない、言い換えれば束縛条件\(x^2+y^2=l^2\),(ここで\(l\)は定数)の元で考える場合、ポテンシャルエネルギーVは
\(
\begin{align}
V&=V(x,\dot{x},y,\dot{y},t)=-mgy \\
&=V(r,\dot{r},\theta,\dot{\theta},t)=mgr\cos\theta
\end{align}
\)

であり、\(\dot{l}=0\)なので
\(
\displaystyle L(\theta,\dot{\theta},t)=\frac{1}{2}ml^2\dot{\theta}^2-mgl\cos\theta
\)

となります。

運動方程式を求めるにはラグランジュの運動方程式
\(
\displaystyle \frac{d}{dt}\left(\frac{\partial L}{\partial \dot{\theta}}\right)-\frac{\partial L}{\partial \theta}=0
\)

に代入し、計算します。
\(
\begin{align}
\frac{d}{dt}\left(\frac{\partial L}{\partial \dot{\theta}}\right)-\frac{\partial L}{\partial \theta}&=0 \\
\frac{d}{dt}(ml^2\dot{\theta})+mgl\sin{\theta}&=0 \\
ml^2\ddot{\theta}&=-mgl\sin\theta \\
\ddot{\theta}&=-\frac{g}{l}\sin\theta
\end{align}
\)
となり\(\theta\)に関する微分方程式が導けました。

ハミルトニアン\(H\)から出発


ハミルトニアン\(H\)はラグランジアン\(L\)と一般化座標\(q_i\)と一般化運動量\(p_i\)を用いて、
\(
\displaystyle H(\vec{p},\vec{q},t)\equiv\sum_i p_i\dot{q}_i-L(\vec{q},\vec{\dot{q}},t)
\)

と定義されます。また、一般化運動量\(p_i\)は一般化座標\(q_i\)を用いて
\(
\displaystyle p_i=\frac{\partial L(q_i,\dot{q}_i,t)}{\partial \dot{q_i}}
\)

という関係で定義されます。


デカルト座標での一般化運動量\(p_x\)と\(p_y\)は
\(
\begin{eqnarray}
\left\{
\begin{aligned}
p_x&=\frac{\partial L(x,\dot{x},y,\dot{y},t)}{\partial \dot{x}}=m\dot{x} \\
p_y&=\frac{\partial L(x,\dot{x},y,\dot{y},t)}{\partial \dot{y}}=m\dot{y}
\end{aligned}
\right.
\end{eqnarray}
\)

となるため、デカルト座標でのハミルトニアン
\(
\begin{align}
H(x,p_x,y,p_y,t)&=p_x\dot{x}+p_y\dot{y}-\left\{\frac{1}{2}m(\dot{x}^2+\dot{y}^2)-V(x,\dot{x},y,\dot{y},t)\right\} \\
&=\frac{p_x^2}{m}+\frac{p_y^2}{m}-\left\{\frac{1}{2}m(\frac{p_x^2}{m^2}+\frac{p_y^2}{m^2})-V(x,\dot{x},y,\dot{y},t)\right\} \\
&=\frac{1}{2m}(p_x^2+p_y^2)+V(x,\dot{x},y,\dot{y},t)
\end{align}
\)
と求められます。

新たな座標系でのは一般化運動量\(p_r, p_{\theta}\)は
\(
\begin{eqnarray}
\left\{
\begin{aligned}
p_r&=\frac{\partial L(r,\dot{r},\theta,\dot{\theta},t)}{\partial \dot{r}}=m\dot{r} \\
p_{\theta}&=\frac{\partial L(r,\dot{r},\theta,\dot{\theta},t)}{\partial \dot{\theta}}=mr^2\dot{\theta}
\end{aligned}
\right.
\end{eqnarray}
\)
なので、新たな座標系でのハミルトニアン\(H(r,p_r,\theta,p_{\theta},t)\)は
\(
\begin{align}
H(r,p_r,\theta,p_{\theta},t)&=p_r\dot{r}+p_{\theta}\dot{\theta}-\left\{\frac{1}{2}m(\dot{r}^2+r^2\dot{\theta}^2)-V(r,\dot{r},\theta,\dot{\theta},t) \right\} \\
&=\frac{p_r^2}{m}+\frac{p_{\theta}^2}{mr^2}-\left\{ \frac{p_r^2}{2m}+r^2\frac{p_{\theta}^2}{2mr^4} – V(r,\dot{r},\theta,\dot{\theta},t) \right\} \\
&=\frac{1}{2m}\left(p_r^2+\frac{p_{\theta}^2}{r^2}\right) + V(r,\dot{r},\theta,\dot{\theta},t)
\end{align}
\)
と求められます。

今、もしも振り子をつないでいる棒が時間変化しない、言い換えれば束縛条件\(x^2+y^2=l^2\), (ここで\(l\)は定数) の元で考える場合\(r=l\)を代入し、ポテンシャルエネルギー\(V\)は
\(
\begin{align}
V&=V(x,\dot{x},y,\dot{y},t)=-mgy \\
&=V(l,\dot{l},\theta,\dot{\theta},t)=mgl\cos\theta
\end{align}
\)

と求められます。今、\(p_l=m\dot{l}=0\)なのでハミルトニアンは
\(
\displaystyle H(\theta,p_{\theta},t)=\frac{p_{\theta}^2}{2ml^2}+mgl\cos{\theta}
\)

となります。
ハミルトンの正準運動方程式
\(
\begin{eqnarray}
\left\{
\begin{aligned}
\frac{\partial H}{\partial q_i}&=-\dot{p}_i \\
\frac{\partial H}{\partial p_i}&=\dot{q}_i
\end{aligned}
\right.
\end{eqnarray}
\)

に代入すれば
\(
\begin{eqnarray}
\left\{
\begin{aligned}
\frac{d p_{\theta}}{dt}&=-mgl\sin\theta \\
\frac{d \theta}{dt}&=\frac{p_{\theta}}{ml^2}
\end{aligned}
\right.
\end{eqnarray}
\)

より、\(p_{\theta}\)を消去すれば、
運動方程式
\(
\displaystyle \frac{d^2\theta}{dt^2}=-\frac{g}{l}\sin\theta
\)

と導けます。

振り子の運動方程式


今、解くべき方程式は
\(
\displaystyle \frac{d^2\theta}{dt^2}=-\frac{g}{l}\sin\theta
\)

になります。

振り子の角度が小さいとき


まず、よく近似される角度が小さい時だけを議論するとします。
\(\sin\theta\)はテイラー展開より、
\(
\displaystyle \sin{\theta}= \theta-\frac{\theta^3}{3!}+\frac{\theta^5}{5!}-\frac{\theta^7}{7!}+\cdots =\sum_{n=1}^{\infty}(-1)^{n+1}\frac{\theta^{2n-1}}{(2n-1)!}
\)

であるため、\(\theta\ll 1\)である場合は初めの1項だけ考慮し、
\(
\sin{\theta}\sim \theta
\)

と近似します。すると、
\(
\displaystyle \frac{d^2\theta}{dt^2}=-\frac{g}{l}\theta
\)

となります。

通常は解\(\theta(t)\)を\(C_1\sin(\sqrt{\frac{g}{l}}t)+C_2\cos(\sqrt{\frac{g}{l}}t)\)とか置いてしまいますが、今回は数学的な手順に従って導出します。

まず、\(\displaystyle\frac{d}{dt}\left\{\left(\frac{d\theta}{dt}\right)^2\right\}\)という量を計算すると、
\(
\displaystyle \frac{d}{dt}\left\{\left(\frac{d\theta}{dt}\right)^2\right\}=2\frac{d\theta}{dt}\cdot \frac{d^2\theta}{dt^2}
\)

という関係があることが分かります。これを利用すると2階微分を1階微分に落とすことができます。
まず、運動方程式の両辺に\(\displaystyle 2\frac{d\theta}{dt}\)を掛け、整理していきます。すなわち、
\(
\begin{align}
2\frac{d \theta}{dt}\cdot\frac{d^2 \theta}{dt^2}=-\frac{g}{l}2\frac{d \theta}{dt}\cdot\theta \\
\frac{d}{dt}\left\{\left(\frac{d\theta}{dt}\right)^2\right\}=\frac{d}{dt}\left\{-\frac{g}{l}\theta^2\right\} \\
\left(\frac{d\theta}{dt}\right)^2=-\frac{g}{l}\theta^2+C_0
\end{align}
\)
となります。ここで\(\left(\frac{d\theta}{dt}\right)^2\)は\(\theta\)が虚数をとらない限り必ず正であることから、
\(-\pi\lt \theta\lt \pi\)の範囲で(ただし、\(\sin\theta\sim \theta\)の成り立つ近似の領域が\(\theta\)が小さい場合だけなので、まぁまぁ可能な範囲、として考えます。)
どんなに変化しても積分定数\(C_0\)はそれより大きい値(\(\left(\frac{d\theta}{dt}\right)^2\geq 0\)にする値、\(C_0\)は必ず正である。)でなければなりません。
それを考えながら左辺の2乗を取り払い、
\(
\begin{align}
\frac{d\theta}{dt} = \pm \sqrt{C_0-\frac{g}{l}\theta^2} \\
\pm \int \frac{1}{\sqrt{C_0-\frac{g}{l}\theta^2}}d\theta=\int dt
\end{align}
\)
となります。左辺を計算するため変数変換
\(
\displaystyle \sqrt{\frac{g}{l}}\theta=\sqrt{C_0}\sin\phi
\)

を行います。
\(
\displaystyle \frac{d \theta}{d\phi}=\sqrt{\frac{l}{g}C_0}\cos\phi
\)

なので
\(
\begin{align}
\displaystyle \int \frac{1}{\sqrt{C_0-\frac{g}{l}\theta^2}}d\theta
&=\displaystyle \int \frac{1}{\sqrt{C_0}\sqrt{1-\sin^2{\phi}}}\cdot\sqrt{\frac{l}{g}C_0}\cos{\phi}d\phi \\
&=\sqrt{\frac{l}{g}}\phi \\
&=\sqrt{\frac{l}{g}}\sin^{-1}\left(\sqrt{\frac{g}{lC_0}}\theta\right)
\end{align}
\)
と計算できるので、
\(
\begin{align}
\sqrt{\frac{l}{g}}\sin^{-1}\left(\sqrt{\frac{g}{lC_0}}\theta\right)=t+C_1 \\
\theta(t)=\sqrt{\frac{l}{g}C_0}\sin\left(\pm \sqrt{\frac{g}{l}}(t+C_1)\right)
\end{align}
\)
と書けます。\(C_0,C_1\)は単なる積分定数であるためにそれ自体の意味はなく、また、\(\sin\)の中の±は\(C_1\)を調節すれば関係なくなるので、それらを省略すれば
\(
\displaystyle \theta(t)=C_0\sin\left(\sqrt{\frac{g}{l}}t+C_1\right)
\)

となります。角周波数は
\(\displaystyle \omega=\sqrt{\frac{g}{l}}\)
となります。

角度が小さいときはこれでお仕舞いにします。

振り子の角度が大きいとき


楕円関数というものが計算を行っていくと出てきます。そこに至るまでの手順は振り子の角度が小さいときの手順に途中まで同じです。
対象になる問題は
\(
\displaystyle \frac{d^2\theta}{dt^2}=-\frac{g}{l}\sin\theta
\)

です。ここで\(\sqrt{\frac{g}{l}}=\omega\)とおいて、
\(
\displaystyle \frac{d^2\theta}{dt^2}=-\omega^2\sin\theta
\)

と書き直します。
振り子の角度が小さいときと同じようにまず2階微分を1階微分に焼直すため、両辺に\(\displaystyle 2\frac{d\theta}{dt}\)を掛けて、
\(
\begin{align}
2\frac{d \theta}{dt}\cdot\frac{d^2 \theta}{dt^2}=-\omega^2\frac{d \theta}{dt}\cdot \sin\theta \\
\frac{d}{dt}\left\{\left(\frac{d\theta}{dt}\right)^2\right\}=\frac{d}{dt}\left\{2\omega^2\cos\theta\right\} \\
\left(\frac{d\theta}{dt}\right)^2=2\omega^2\cos(\theta)+C_0
\end{align}
\)
ここで左辺はゼロ以下になることはないため、そうなるように積分定数\(C_0\)を決めます。
ここでの積分定数\(C_0\)の持つ物理的な意味をちょっと考えます。
振り子には大きく分けて2種類の運動が存在します。1つは\(\theta\)が小さいときの運動の延長線上にある、最下点を中心として振動する運動であり、もう1つはぐるんぐるん回る運動です。
ちょっと違う言い方をすれば、1つ目の運動は必ず粒子の速度の大きさ\(|v|=l|\frac{d \theta}{dt}|\)=0になる時間が存在する運動を表し、2つ目の運動は常に速度の大きさ\(|v|\)がゼロではない有限の値を持つ運動を表します。
この運動の区別がこの積分定数\(C_0\)に依存するのです。

何はともあれ、数学的な話をしていけば2つの運動を記述する微分方程式はどちらも\(\displaystyle \frac{d^2\theta}{dt^2}=-\omega^2\sin\theta\)であるので、これが解ければ自然と両方の運動を記述する答えが得られるはずです。その区別は後で考えましょう。

つまり、言いたかったことは\(C_0\)はいつも\(2\omega^2\cos(\theta)\)以上ですよ、ということを言いたかったんです。
よって、左辺のルートを取り払います。
\(
\begin{align}
\left(\frac{d\theta}{dt}\right)^2 &=2\omega^2\cos(\theta)+C_0 \\
\frac{d\theta}{dt} &=\pm\sqrt{C_0+2\omega^2\cos(\theta)}
\end{align}
\)
天下り的ですが、ここで
\(
\displaystyle \cos\theta=1-2\sin^2{\frac{\theta}{2}}
\)
の関係式を使って、
\(
\begin{align}
\frac{d\theta}{dt} &=\pm\sqrt{C_0+2\omega^2\left(1-2\sin^2{\frac{\theta}{2}}\right)} \\
&=\pm \sqrt{(C_0+2\omega^2)}\sqrt{1-\frac{4\omega^2}{C_0+2\omega^2}\sin^2\frac{\theta}{2}} \\
&=\pm 2\omega k\sqrt{1-\frac{1}{k^2}\sin^2\frac{\theta}{2}}
\end{align}
\)
となります。ここで\(\displaystyle \frac{1}{k}=\sqrt{\frac{4\omega^2}{C_0+2\omega^2}}\)という量\(k\)を定義しました。
なぜ\(\frac{1}{k}\)なの?という理由は後々都合がよくなるからです。深い意味はありません。

運動方程式は
\(
\begin{align}
\frac{d\theta}{dt}=\pm 2\omega k\sqrt{1-\frac{1}{k^2}\sin^2\frac{\theta}{2}}
\end{align}
\)

とここまで簡略化されました。積分します。
\(
\displaystyle \pm\frac{1}{2\omega k}\int_{\theta_0}^{\theta} \frac{1}{\sqrt{1-\frac{1}{k^2}\sin^2\frac{\theta}{2}}}d\theta=\int_{t_0}^{t} dt
\)

となります。積分区間は初期時刻\(t_0\)に角度\(\theta_0\)にいた質点が時刻\(t\)には角度\(\theta\)にいることを意味します。
通常、積分区間は積分定数\(C_1\)を使って表します。この積分区間は以下の変形が可能です。丁寧にやると、
\(
\begin{align}
\int_{\theta_0}^{\theta} f(\theta)d\theta &= \int_{t_0}^{t} g(t) dt \\
\int_{\theta_0}^{0} f(\theta)d\theta+\int_{0}^{\theta} f(\theta)d\theta &= \int_{t_0}^{0} g(t) dt+\int_{0}^{t} g(t) dt \\
\int_{0}^{\theta} f(\theta)d\theta &= \int_{0}^{t} g(t) dt + C_1
\end{align}
\)
です。よって
\(
\displaystyle \pm\frac{1}{2\omega k}\int_{0}^{\theta} \frac{1}{\sqrt{1-\frac{1}{k^2}\sin^2\frac{\theta}{2}}}d\theta=\int_{0}^{t} dt + C_1
\)

を解けば良いことになります。左辺の積分を解きましょう。
変数変換\(\frac{1}{k}\sin\frac{\theta}{2}=\sin{\phi}\)を行います。

\(
\begin{align}
\frac{d}{d\phi}\left(\frac{1}{k}\sin\frac{\theta}{2}\right)&=\frac{d}{d\phi}\sin\phi \\
\frac{1}{k}\cos\left(\frac{\theta}{2}\right)\frac{1}{2}\frac{d \theta}{d\phi} &= \cos\phi \\
\frac{d \theta}{d\phi} &= 2k \frac{\cos{\phi}}{\cos\frac{\theta}{2}}
\end{align}
\)
となります。積分区間は
\(
\begin{align}
&\theta\ \ | 0 \rightarrow \ \theta \\
&\phi\ \ | 0 \rightarrow \ \phi(=\sin^{-1}(\frac{1}{k}\sin{\frac{\theta}{2}})) \\
\end{align}
\)

と変化します。左辺に代入すれば、
\(
\begin{align}
\pm\frac{1}{2\omega k}\int_{0}^{\theta} \frac{1}{\sqrt{1-\frac{1}{k^2}\sin^2\frac{\theta}{2}}}d\theta
&=\pm\frac{1}{2\omega k}\int_{0}^{\phi} \frac{1}{\sqrt{1-\sin^2\phi}}2k\frac{\cos{\phi}}{\cos\frac{\theta}{2}} d\phi \\
&=\pm \frac{1}{\omega} \int_{0}^{\phi} \frac{1}{\cos\frac{\theta}{2}}d\phi \\
&=\pm \frac{1}{\omega} \int_{0}^{\phi} \frac{1}{\sqrt{1-k^2\sin^2\phi}}d\phi \\
\end{align}
\)
となります。故に、
\(
\displaystyle \int_{0}^{\phi} \frac{1}{\sqrt{1-k^2\sin^2\phi}}d\phi =\pm\omega t+C_1
\)
   …(A)
と表されます。左辺の積分は楕円積分と呼ばれています。

第一種Legendre楕円積分は
\(
\displaystyle F(\phi, k)=\int_0^{\phi} \frac{1}{\sqrt{1-k^2\sin^2\phi}}d\phi
\)

と定義されます。この逆関数の\(sin\)はJacobiの楕円関数\(sn(u,k)\)をして定義されています。
どういうことかといえば、\(u=F(\phi, k)\)のとき、\(\phi=F^{-1}(u,k)\)であるので、
\(
\sin\phi=\sin(F^{-1}(u,k))=sn(u,k)
\)

という関数を定義するのです。

すると、今、\(\pm \omega t+C_1=F(\phi, k)\)であるため、
\(
\begin{align}
\pm \omega t+C_1&=F(\phi, k)=u \\
\phi&=F^{-1}(\pm \omega t+C_1, k) \\
\sin\phi &=\sin(F^{-1}(u,k)) \\
\sin\phi &=sn(u,k)
\end{align}
\)
となります。

\(\sin\phi=\frac{1}{k}\sin\frac{\theta}{2}\)なので求めたかった\(\theta(t)\)は
\(
\begin{align}
\sin{\frac{\theta}{2}}=k\ sn(\pm\omega t+C_1, k) \\
\theta(t)=2\sin^{-1}(k\ sn(\pm\omega t+C_1, k))
\end{align}
\)

と求められます。

[adsense2]

Jacobiの楕円関数は数値計算的にはランデンの方法という方法で計算されるそうです。
さて、式(A)を見ていると、kが1以上の場合、なんかおかしいことに気が付くかと思います。もしもkが1以上の場合、被積分関数のルートの中が負になることがあり得るんじゃ・・・?
実はこの状況が生まれることはありません。これは積分範囲が今\(0\sim\phi\)になっていますが、\(\phi=\sin^{-1}(\frac{1}{k}\sin{\frac{\theta}{2}})\)であらわされる区間なので、kの値に応じてとりうる積分範囲は必ずルートの中が負にならない範囲に収まるのです。

ただ、上の問題を心配する必要が無いようにkの範囲は\(0\le k\le 1\)に通常は制限されます。
k=2の楕円関数は存在するのに範囲が制限されて、計算どうするの?という疑問が生まれます。
これを解決するのはJacobiの楕円関数snの性質を利用します。
Jacobiの楕円関数は三角関数の拡張であるとみなせるので、その性質は非常に多岐にわたります。
その中の一つにこういう関係式があります。
\(
\displaystyle sn(u,\frac{1}{k})=k\ sn(\frac{u}{k},k)
\)

これを使うとkが1より大きい時でも変換することができます。

具体的には、
\(
\begin{eqnarray}
\theta(t)=
\left\{
\begin{aligned}
& 2\sin^{-1}(k\ sn(\pm\omega t+C_1, k)) \dots (0 \lt k \lt 1) \\
& 2\sin^{-1}(sn(k \omega t+C_1),\frac{1}{k}) \dots (1\lt k)
\end{aligned}
\right.
\end{eqnarray}
\)
となります。運動の状態と対応させるのであれば、一つ目の式\((k\lt 1)\)の場合は往復運動をし、\((k\gt 1)\)の時はぐるんぐるん回る運動に対応します。

1往復、または1回転に要する時間Tは
\(
\begin{eqnarray}
T=
\left\{
\begin{aligned}
&\frac{4}{\omega}K(k) \dots (0 \lt k \lt 1) \\
&\frac{2}{k\omega}K(\frac{1}{k}) \dots (1 \lt k1)
\end{aligned}
\right.
\end{eqnarray}
\)
として与えられます。ここでK(k)は第1種完全楕円積分で、
\(
\displaystyle K(k)=\int_0^1 \frac{1}{\sqrt{(1-x^2)(1-k^2 x^2)}}dx
\)

という定積分です。


例えば、微分方程式
\(
\displaystyle \frac{d^2\theta}{dt^2}=-\sin\theta
\)


\(
t=0,\; \theta=0; \frac{d\theta}{dt}=1.9 (k=0.95)
\)
の初期条件の下解いた場合、
1周期\(T\)は
\(
T=4K(0.95)=10.360044923498004876778\cdots
\)

となります。
この値はwolfram alphaから求めました。
4*EllipticK[0.95*0.95] wolfram alpha
wolfram alphaでの第1種完全楕円積分は
\(
\displaystyle EllipticK[k’]=\int_0^1 \frac{1}{\sqrt{(1-x^2)(1-k’ x^2)}}dx
\)

として定義されているので注意が必要です。


参考文献


森口繁一, 宇田川銈久, 一松信著『数学公式Ⅲ 特殊関数』岩波書店(1960)p.40~45
Hamilton の正準運動方程式 -epii’s physics notes
KIT -数学ナビゲーション
振り子と楕円関数
Jacobi Elliptic Functions — from Wolfram MathWorld

二重振り子

座標の取り方は下図のように取ります。棒の伸び縮みは無いものとします。
二重振り子座標
どういう解き方でもいいですが、ここでは

  1. デカルト座標\(L(x,y)\)でラグランジアンを記述
  2. デカルト座標から座標変換し、\((r,\theta)\)でラグランジアンを記述
  3. 新たな座標系で運動方程式を導く

という順で解いていきます。

[adsense1]

1, デカルト座標でのラグランジアンLは(運動エネルギーK)-(位置エネルギーU)と書けるため、
\(
L(x_1,\dot{x}_1,y_1,\dot{y}_1,x_2,\dot{x}_2,y_2,\dot{y}_2)\\
\displaystyle =\frac{1}{2}m_1(\dot{x}_1^2+\dot{y}_1^2)+\frac{1}{2}m_1(\dot{x}_1^2+\dot{y}_2^2)-(-m_1gy_1-m_2gy_2)
\)
と書けます。

2, デカルト座標から座標変換
式を簡単にするために座標変換を行います。新しい座標\((r_1,\theta_1,r_2,\theta_2)\)とデカルト座標\((x_1,y_1,x_2,y_2)\)の関係式は
\(
\begin{align}
x_1&=r_1\sin{\theta_1}\\
y_1&=-r_1\cos{\theta_1}\\
x_2&=r_1\sin{\theta_1}+r_2\sin{\theta_2}\\
y_2&=-r_1\cos{\theta_1}-r_2\cos{\theta_2}
\end{align}
\)
という関係があります。各々を時間で微分すれば、
\(
\begin{align}
\dot{x}_1&=\dot{r}_1\sin{\theta_1}+r_1\dot{\theta}_1\cos{\theta_1}\\
\dot{y}_1&=-\dot{r}_1\cos{\theta_1}+r_1\dot{\theta}_1\sin{\theta_1}\\
\dot{x}_2&=\dot{r}_1\sin{\theta_1}+r_1\dot{\theta}_1\cos{\theta_1}+\dot{r}_2\sin{\theta_2}+r_2\dot{\theta}_2\cos{\theta_2}\\
\dot{y}_2&=-\dot{r}_1\cos{\theta_1}+r_1\dot{\theta}_1\sin{\theta_1}-\dot{r}_2\cos{\theta_2}+r_2\dot{\theta}_2\sin{\theta_2}
\end{align}
\)
これらをラグランジアン\(L(x_1,\dot{x}_1,y_1,\dot{y}_1,x_2,\dot{x}_2,y_2,\dot{y}_2)\)に代入します。すると、新たな座標系でのラグランジアン\(L(r_1,\dot{r}_1,\theta_1,\dot{\theta}_1,r_2,\dot{r}_2,\theta_2,\dot{\theta}_2)\)が得られます。
\(
\begin{align}
L(r_1,\dot{r}_1,\theta_1,\dot{\theta}_1,& r_2,\dot{r}_2,\theta_2,\dot{\theta}_2) \\
=&\frac{1}{2}m_1(\dot{r}_1^2+r_1^2\dot{\theta}_1^2)+\frac{1}{2}m_2\left[\dot{r}_1^2+\dot{r}_2^2+r_1^2\dot{\theta}_1^2+r_2^2\dot{\theta}_2^2 \right. \\
&\left.+2(\dot{r}_1 r_2 \dot{\theta}_2-r_1\dot{r}_2 \dot{\theta}_1)\sin{(\theta_1-\theta_2)}+2(\dot{r}_1 \dot{r}_2 +r_1 r_2 \dot{\theta}_1 \dot{\theta}_2)+\cos{(\theta_1-\theta_2)}\right] \\
&+m_1gr_1\cos{\theta_1}+m_2g(r_1\cos{\theta_1}+r_2\cos{\theta_2})
\end{align}
\)

僕は先ほど式を簡単にするために座標変換をする、といいました。しかし、新しい座標系におけるラグランジアンはどう見ても元のデカルト座標系のラグランジアンに比べて複雑です。この理由は物理的な意味から来ています。
振り子をつないでいる棒が伸び縮みしないとすると系の自由度は角度\(\theta_1,\theta_2\)の2つです。
となると運動方程式は最高で2本の独立した方程式になるはずです。
しかし、デカルト座標の場合うまく自由度を落とすことができず、運動方程式は4つになってしまいます。
そこで棒が伸び縮みを簡単に表すことができる座標系に移ることでうまく方程式の数を減らせます。

新しい座標系でのラグランジアンで棒の伸び縮みがないという条件を表すには
\(
\begin{align}
r_1&=l_1\ (l_1\mbox{は定数}) \\
r_2&=l_2\ (l_2\mbox{は定数})
\end{align}
\)
と書けるわけで、また、
\(
\begin{align}
\dot{r}_1&=0 \\
\dot{r}_2&=0
\end{align}
\)
となるわけです。

\(m_1=m_2=m,\ l_1=l_2=l\)という場合を特に考えると、ラグランジアンは
\(
\displaystyle L(\theta_1,\dot{\theta}_1,\theta_2,\dot{\theta}_2)=ml^2\left[\dot{\theta}_1^2+\frac{1}{2}\dot{\theta}_2^2+\dot{\theta}_1\dot{\theta}_2\cos{(\theta_1-\theta_2)}\right]+mgl(2\cos{\theta_1}+\theta_2)
\)
と書けます。あとはラグランジュの運動方程式を当てはめて計算します。

3, 新たな座標系で運動方程式を導く
保存力場中でのラグランジュの運動方程式は
\(
\begin{eqnarray}
\left\{
\begin{aligned}
\frac{d}{dt}\left(\frac{\partial L}{\partial\dot{\theta}_1}\right)-\frac{\partial L}{\partial\theta_1}&=0 \\
\frac{d}{dt}\left(\frac{\partial L}{\partial\dot{\theta}_2}\right)-\frac{\partial L}{\partial\theta_2}&=0
\end{aligned}
\right.
\end{eqnarray}
\)
なので、代入し、\(\ddot{\theta}_1,\ddot{\theta}_2\)に関する運動方程式にすれば
\(
\begin{eqnarray}
\left\{
\begin{aligned}
\ddot{\theta}_1&=\frac{1}{2}\left\{-\ddot{\theta}_2\cos{(\theta_1-\theta_2)}-\dot{\theta}_2^2\sin{(\theta_1-\theta_2)}-2\frac{g}{l}\sin{\theta_1} \right\} \\
\ddot{\theta}_2&=-\ddot{\theta}_1\cos{(\theta_1-\theta_2)}+\dot{\theta}_1^2\sin{(\theta_1-\theta_2)}-\frac{g}{l}\sin{\theta_2}
\end{aligned}
\right.
\end{eqnarray}
\)
となります。これは非線形の2階連立微分方程式です。カオスです。解けません。
数値計算で解きます。用いるのは4次ルンゲ・クッタ法です。

実際に解いてみると、こうなります。

2重振り子の実験もされています。

[adsense2]

カオスが現れる場合、初期値鋭敏性という性質があります。
初期値がほんのちょっと変わるだけでその後の時間発展の様子が大きく変わる性質です。
ちょっと値を変えると上の動画とはまるで違う動きになります。
この動画は上の動画よりも中心に近いほうの粒子の初期速度が4%違います

機械精度の違いでさえも十分な時間発展の後には大きな違いが現れます。複雑であると同時に面白い現象です。