sin基底とquadpackによる1次元時間依存しないシュレーディンガー方程式

確実に積分の計算が可能な、適応型の数値積分パッケージQUADPACKを用いて行列要素を計算します。
精度に影響するのは基底関数(sin関数)の数のみです。

固定端条件の下で時間依存しない1次元シュレーディンガー方程式
\(\displaystyle
\left[-\frac{1}{2}\frac{d^2}{dx^2}+V(x)\right]\psi(x)=E\psi(x)
\)

をsin基底で展開し、変分原理に基づいて対角化します。

sin基底:
\(\displaystyle
\varphi_n(x)=\sqrt{\frac{2}{b-a}}\sin\left(n\pi\frac{x-a}{b-a}\right)
\)

ここで紹介するコードは並列計算に対応しています。

例えば、有限深さの井戸型ポテンシャルのような不連続点があったとしても、
行列要素はquadpackを用いて確実に求める事が出来るため、後はどれだけ基底を積むか?にかかってきます。

必要なファイルは以下のものです。

tar

https://slpr.sakura.ne.jp/qp/supplement_data/tise1d_by_sinbasis_and_quadpack/tise1d_sinbasis_quadpack.tar.gz
もしくは

個別のf90ファイル

https://slpr.sakura.ne.jp/qp/supplement_data/tise1d_by_sinbasis_and_quadpack/main.f90
https://slpr.sakura.ne.jp/qp/supplement_data/tise1d_by_sinbasis_and_quadpack/quadpack.f90

対角化のパッケージを用いるため、mklやlapackと一緒にコンパイルしてください。例えば

ifort -mkl quadpack.f90 main.f90

等です。

デフォルトでは、時間依存しないシュレーディンガー方程式
\(\displaystyle
\left[-\frac{1}{2}\frac{d^2}{dx^2}+\frac{1}{2}x^2\right]\psi(x)=E\psi(x)
\)

を解きます。計算に用いているパラメータは、
区間\([-20:20]\),
基底の数\(80\),
で計算します。

水素様原子の波動関数のコード

非相対論的な水素様原子の電子の波動関数を求めるfortranコードを書きます。

解く問題

電荷\(+Ze\)の原子核の周りに存在する、電荷\(-e\)を持つ電子が満たす時間依存しないシュレーディンガー方程式は、
\(
\displaystyle \left[-\frac{1}{2}\Delta-\frac{Z}{r}\right]\psi({\bf r})=E\psi({\bf r})
\)

です。
\(
\left. \psi({\bf r})\right|_{|{\bf r}|\to \infty}\to 0
\)

の境界条件を満たす正規直交化された解は、
\(
\begin{align}
\psi({\bf r})&=R_{n,l}(r)\cdot Y_{l,m}(\theta,\varphi)\\
&=\sqrt{\left(\frac{2}{n}\right)^3\frac{(n-l-1)!}{2n[(n+l)!]}} e^{-Zr/n} \cdot \left(2\frac{Zr}{n}\right)^l\cdot L_{n-l-1}^{(2l+1)}\left(2\frac{Zr}{n}\right)\cdot Y_{l,m}(\theta,\varphi)
\end{align}
\)

と表されます。ここで、

  • \(n,l,m\)  主量子数,方位量子数,磁気量子数
  • \(r,\theta,\varphi\)  動径方向,z軸方向の角度,xy平面の角度
  • \(L_n^{(\alpha)}(x)\)  ラゲール陪多項式[1]
  • \(Y_{l,m}(\theta,\varphi)\)  球面調和関数[2]

を意味します。

動径関数\(R_{n,l}(r)\)は微分方程式
\(
\displaystyle \left[-\frac{1}{2}\left(\frac{d^2}{dr^2}+\frac{2}{r}\frac{d}{dr}\right)+\frac{l(l+1)}{2r^2}-\frac{Z}{r}\right]R_{n,l}(r)=E_n R_{n,l}(r)
\)

を満たす正規直交化された関数で、固有値は
\(
\displaystyle E_n=-\frac{1}{2n^2}
\)
です。

波動関数を出力するFortranコードはこれ。

計算結果


3次元の波動関数を表示するには3つの座標と波動関数の値の計4つが必要です。
しかし、4次元空間を分かりやすく描画する方法はありません。

そこで、ここでは\(\mathrm{Re}{\psi(x,0,z,t)}\)のように、\(y=0\)にしてグラフを描画します。
\(z\)軸周りの構造がうまく表現できませんが、良しとします。

\(n=1\)

\(n=2\)

\(n=3\)

”color”と書いてあるのは、波動関数の形がはっきり映るようにカラーバーの範囲を調整したものです。
なので、色が飽和しているところはそのカラーバーの範囲で表現することはできない領域です。

\(n=20\)まで同じような画像を作ったのですが、画像の容量が大きくなりすぎました。
なので、見たい方は以下のリンクから元ファイルをダウンロードしてください。

\(n=1\)  Hatomc_n1.png(48KB)

\(n=2\)  Hatomc_n2.png(223KB)

\(n=3\)  Hatomc_n3.png(612KB)

\(n=4\)  Hatomc_n4.png(1MB)

\(n=5\)  Hatomc_n5.png(2MB)

\(n=6\)  Hatomc_n6.png(3MB)

\(n=7\)  Hatomc_n7.png(4MB)

\(n=8\)  Hatomc_n8.png(3MB)

\(n=9\)  Hatomc_n9.png(6MB)

\(n=10\)  Hatomc_n10.png(6MB)

\(n=11\)  Hatomc_n11.png(9MB)

\(n=12\)  Hatomc_n12.png(9MB)

\(n=13\)  Hatomc_n13.png(10MB)

\(n=14\)  Hatomc_n14.png(14MB)

\(n=15\)  Hatomc_n15.png(15MB)

\(n=16\)  Hatomc_n16.png(16MB)

\(n=17\)  Hatomc_n17.png(18MB)

\(n=18\)  Hatomc_n18.png(19MB)

\(n=19\)  Hatomc_n19.png(21MB)

\(n=20\)  Hatomc_n20.png(21MB)

n=1~n=20までのファイル hatom.zip(164MB)

例えば、n=13, n=20はこんな感じです(荒くしてます)。

特殊関数に関するプログラミングは特殊関数へ。


How to plot in gnuplot?
Just for note for myself.

You need 2 files which named : multi.plt and atommulti.plt

Before ploting, you must make directory “dat” and move every data files to “dat”.

and in gnuplot, type

call "multi.plt" 2

then, you can get figure.

multi.plt

atommulti.plt

参考


[1]ラゲール陪多項式\(L_m^{(\alpha)}(x)\)

  • 定義域

    \(\;\;\;\;
    0 \lt x \lt \infty
    \)

  • 微分方程式

    \(\;\;\;\;
    \displaystyle
    \left[x\frac{d^2}{dx^2}+(\alpha+1-x)\frac{d}{dx}+n\right]L_m^{(\alpha)}(x)=0
    \)

  • 具体例

    \(\;\;\;\;
    \begin{align}
    & L^{(0)}_0(x)=1 \\
    & L^{(0)}_1(x)=-x+1 \\
    & L^{(0)}_2(x)=\frac{1}{2}(x^2-4x+2) \\
    & L^{(0)}_3(x)=\frac{1}{6}(-x^3+9x^2-18x+6) \\
    & L^{(1)}_0(x)=1 \\
    & L^{(1)}_1(x)=-x+2 \\
    & L^{(1)}_2(x)=\frac{1}{2}\left(x^2-6x+6\right) \\
    & L^{(1)}_3(x)=\frac{1}{6}\left(-x^3+12x^2-36x+24\right)
    \end{align}
    \)

  • 漸化式

    \(\;\;\;\;
    \begin{align}
    L_n^{(\alpha)}(x)&=\binom{n+\alpha}{n}a_0(x) \\
    &\hspace{1em}a_{m-1}(x)=1-\frac{n-m+1}{m(\alpha+m)}\cdot x\cdot a_m(x) \\
    &\hspace{5em}(m=n,n-1,n-2,\cdots,1,\;\;a_n(x)=1)
    \end{align}
    \)
    [3]
    1階微分
    \(\;\;\;\;
    \begin{align}
    \frac{d}{dx}L_n^{(\alpha)}(x)=-L_{n-1}^{(\alpha+1)}(x)
    \end{align}
    \)
    2階微分
    \(\;\;\;\;
    \begin{align}
    \frac{d^2}{dx^2}L_n^{(\alpha)}(x)=L_{n-2}^{(\alpha+2)}(x)
    \end{align}
    \)

  • 直交性

    \(\;\;\;\;
    \displaystyle
    \int_{0}^{\infty} e^{-x}x^{\alpha}L^{(\alpha)}_n(x)L^{(\alpha)}_{n’}(x) dx =\frac{\Gamma(\alpha+n+1)}{n!}\delta_{n,n’},\;\;(\alpha>-1)
    \)

[2]球面調和関数\(Y_{l,m}(\theta,\varphi)\)
ルジャンドル多項式(\(P_l^m(x)\),[3])を用いて
\(
Y_{l,m}(\theta,\varphi)=(-1)^{(m+|m|)/2}\sqrt{\frac{2l+1}{4\pi}\frac{(l-|m|)!}{(l+|m|)!}}P_l^{|m|}(\cos\theta)e^{im\phi}
\)

[3]ルジャンドル陪多項式\(P_l^m(x)\)

  • 定義域

    \(\;\;\;\;
    1 \lt x \lt -1
    \)

  • 微分方程式

    \(\;\;\;\;
    \displaystyle (1-x^2)\frac{d^2}{dx^2}P_l^m(x)-2x\frac{d}{dx}P_l^m(x)+\left[l(l+1)-\frac{m^2}{1-x^2}\right]P_l^m(x)=0
    \)

  • 具体例

    \(\;\;\;\;
    \begin{align}
    & P_0^0(x)=1 \\
    & P_{1}^{-1}(x)=\frac{1}{2}(1-x^2)^{1/2} \\
    & P_{1}^{0}(x)=x \\
    & P_{1}^{1}(x)=-(1-x^2)^{1/2} \\
    & P_{2}^{-2}(x)=\frac{1}{8}(1-x^2) \\
    & P_{2}^{-1}(x)=\frac{1}{2}x(1-x^2)^{1/2} \\
    & P_{2}^{0}(x)=\frac{1}{2}(3x^2-1) \\
    & P_{2}^{1}(x)=-3(1-x^2)^{1/2} \\
    & P_{2}^{2}(x)=3(1-x^2)
    \end{align}
    \)

  • 漸化式

    用いている式
    \(\;\;\;\;
    \begin{align}
    & P_{|m|}^{|m|}(x)=(-1)^{|m|}(2|m|-1)!!(1-x^2)^{\frac{|m|}{2}} \\
    & P_{l}^{-m}(x)=(-1)^m\frac{(l-m)!}{(l+m)!}P_l^m(x) \\
    & P_{|m|}^{|m|+1}(x)=(2|m|+1)xP_{|m|}^{|m|}(x) \\
    & P_{|m|}^{|m|+q}(x)=\left(\frac{2|m|-1}{q}+2\right)xP_{|m|}^{|m|+q-1}(x)-\left(\frac{2|m|-1}{q}+1\right)P_{|m|}^{|m|+q-2}(x)
    \end{align}
    \)[1]
    1階微分
    \(\;\;\;\;
    \begin{align}
    m=\pm 1&\; \\
    &:\hspace{1em} \frac{d}{dx}P_l^m(x)=\frac{lx}{(x^2-1)}P_l^m(x)-\frac{l+m}{(x^2-1)} P_{l-1}^m(x) \\
    m\ne\pm 1\; \\
    &:\hspace{1em} \frac{d}{dx}P_l^m(x)=c_{2}P^{m+2}_{l-1}(x)+c_0 P^{m}_{l-1}(x)+c_{-2} P^{m-2}_{l-1}(x) \\
    &\hspace{1em} c_{2}=\frac{1}{4(m+1)}\\
    &\hspace{1em} c_{0}=\frac{l+m}{2}\left(1+\frac{l}{1-m^2}\right)\\
    &\hspace{1em} c_{-2}=-\frac{(l+m)(l+m-1)(l+m-2)(l-m+1)}{4(m-1)}
    \end{align}
    \)
         ※\(m=\pm 1\)の時、\(x=\pm 1\)で発散します。
    2階微分
    \(\;\;\;\;
    \begin{align}
    m=\pm 1,\pm 3&\; \\
    &:\hspace{1em} \frac{d^2}{dx^2}P_l^m(x)=\frac{1}{1-x^2}\left[2x\frac{dP_l^m(x)}{dx}+\frac{(l+1)(l+m)}{2l+1}\frac{dP_{l-1}^m(x)}{dx}-\frac{l(l-m+1)}{2l+1}\frac{dP_{l+1}^m(x)}{dx}\right] \\
    m\ne\pm 1,\pm 3&\; \\
    &:\hspace{1em} \frac{d^2}{dx^2}P_l^m(x)=c_{2}\frac{dP^{m+2}_{l-1}(x)}{dx}+c_0 \frac{dP^{m}_{l-1}(x)}{dx}+c_{-2} \frac{dP^{m-2}_{l-1}(x)}{dx}
    \end{align}
    \)
         ※\(m=\pm 1,\pm 3\)の時、\(x=\pm 1\)で発散します。

  • 直交性

    \(l\)に対する直交性
    \(\;\;\;\;
    \displaystyle
    \int_{-1}^{1} P_{m}^{l}(x)P_{m}^{l’}(x) dx =\frac{2}{2l+1}\cdot \frac{(l+m)!}{(l-m)!}\delta_{l,l’}
    \)

[3] Abramowitz & Stegun (1965), ISBN 978-0486612720 (Numerical Method, 22.18, Page 789)
[4] Abramowitz & Stegun (1965), ISBN 978-0486612720 (Numerical Method, 22.2, Page 774,775)