弾道計算のコード(Excel)

Excelのマクロ(VBA)で弾道計算を行うコードを作成しました。

https://slpr.sakura.ne.jp/qp/supplement_data/BBullet_course_excel/BBbullet_course_ver1.41.xlsm
上記プログラムの利用の際は連絡先と著作権についてをご覧ください。

空気抵抗を修正したβ版を作成しました。参考設定は機能しません。
https://slpr.sakura.ne.jp/qp/supplement_data/BBullet_course_excel/BBbullet_course_ver1.5_beta.xlsm

以下の微分方程式を計算します。

エクセルシート”bullet”
\(
\begin{align}
m\frac{d^2 \vec{r}}{dt^2}&=
-mg\vec{k}-\frac{1}{2}C_d \rho \pi R^2 |\vec{V}|\vec{V}
-C_l \frac{4}{3}\pi R^3 2\rho |\vec{\omega}| |\vec{V}|\frac{\vec{V}\times\vec{\omega}}{|\vec{V}\times\vec{\omega}|} \\
\frac{d\mathbf{\omega}}{dt}&=N/I \\
N&=\frac{\rho C_f}{2}R\frac{4\pi R^2}{2}\left(|v_{up}|v_{up}+|v_{down}|v_{down}\right)
\end{align}
\)
回転の減衰は本来、弾道計算(BB弾)の理論で導いた通り積分を行わなければなりませんが、簡単にするためにBB弾を真四角の箱として近似して導いています。
この近似は本来の積分値と1パーセント程度の違いしか出てこないので、BB弾の計算には非常に良い近似です。
回転の減衰を取り入れたくない場合、入力パラメータの”回転の減衰”項目をNOにすることでそのように設定が出来ます。
ゼロインを固定した時の弾道の探索機能は実装していないので出来ません。
Excelの設定項目では、Fortranで実装したコードから求めたパラメータをあらかじめ用意しておきました。
設定されたものと書いてあっても、高精度に積分計算をして求めた結果と上の近似をもちいた本エクセルの結果は違くなります。数10cm程度のずれは出てきますので、その点は注意してください。

エクセルシート”barrel”
\(
\begin{align}
m\frac{d^2}{dt^2}x(t)&=\left[P(t)-P_0\right]S_{BB}-\frac{1}{2}C_d \rho \pi R^2 |v(t)|v(t) \\
m_s\frac{d^2}{dt^2}x_0(t)&=-k\left[x_0(t)-x_B-l\right]-[P(t)-P_0]S_s -F_f\label{bbin2} \\
\frac{d}{dt}V(t)&=v(t)S_{\text{barrel}}-v_0(t)S_s+c'(S_{barrel}-\pi R^2)\mathrm{sgn}(P(t)-P_0)\sqrt{\frac{2}{\rho}|P(t)-P_0|}
\end{align}
\)

内部は以下の構造をしていると想定しています。詳細はバレル内部でのBB弾の方程式をご覧ください。

計算手法はどちらも陽的4次ルンゲクッタ法を用いています。

使い方


  1. ファイルのダウンロード
  2. 最新
    https://slpr.sakura.ne.jp/qp/supplement_data/BBullet_course_excel/BBbullet_course_ver1.5_beta.xlsm

    をクリックでダウンロード、もしくは
    右クリックして、”名前を付けてリンク先を保存”からダウンロードしてください。

  3. 計算パラメータの入力
  4. 入力する場所は、色付きのセルです。

    • 弾道計算について

    • 出力結果は大きく分けて2つの項目に分かれています。
      1つ目は定数、射出高さに着弾、地面に着弾の項目は重要と思われるパラメータの抜粋、2つ目は弾道の時間ごとのデータです。
      グラフは、2つ目のデータを元に表示しているだけですので、必要に応じて追加、変更を行ってください。

    • バレル内部の計算について

    • 出力結果は大きく分けて2つの項目に分かれています。
      1つ目は定数、内圧が大気圧に等しい時に射出される時と指定したバレル長におけるパラメータの抜粋、2つ目はBB弾、ピストンの位置、速度の時間ごとのデータです。
      グラフは、2つ目のデータを元に表示しているだけですので、必要に応じて追加、変更を行ってください。

    手入力で入力することも可能ですが、参考設定と書かれたボタンを押すことで、予め設定されたパラメータを読み込ませることもできます。

  5. 計算開始
  6.   入力パラメータを入力した後、計算開始ボタンを押すことで計算が開始されます。

注意点

常識的なパラメータの範囲内でしか動作確認をしておりません。
この結果はあくまで一例です。本シミュレーションを信用して設計・組立を行い、本シミュレーションと結果が違う事があります。その場合私は責任を負いませんので、その点をご了承して使用してください。
BB弾で出来るからと言って、銃弾等の計算はそれなりの信用しかできないことを考慮してください。

追記


バレル内部の計算において、抜弾抵抗の考慮はしていません。すなわちホップが全く掛かっていない状況の計算です。
もし、ホップを掛けた状況を再現したいのであれば、以下のような考えで出来るでしょう。

まず、ホップを掛けた状態でBB弾をバレル内部から引き出す際に必要な力をどうにかして実験的に求めます。
このホップを掛けた際に必要な力\(F\)は、内部圧力\(P\)とBB弾の面積\(S_{BB}\)を用いて
\(
F=PS_{BB}
\)
と書けるはずです。すなわち、内圧がこの力に達した時にBB弾が射出されるとして考え、その内部圧力に達した際にBB弾の運動方程式を解き始める、という方法で可能なはずです。

参考文献

[1] 弾道計算の理論 -シキノート https://slpr.sakura.ne.jp/qp/bullet-course/
[2] BB弾の弾道学 -ハイパー道楽 http://www.hyperdouraku.com/colum/ballistics/index.html

極値を求めるニュートン法

ニュートン法に関するお話です。
”ニュートン法”と呼ばれる方法は
2種類(1.初期値近傍の極値を求めるニュートン法、2. ゼロ点を求めるためのニュートン法
があるようですが、ここでは1. 初期値近傍の極値を求める方のニュートン法についてのお話です。

まとめ

ベクトル\(\mathbf{x}=(x_1, x_2, \cdots, x_N)\)で指定される実数値関数\(f(\mathbf{x})\)の極値を求める事を考えます。
ここで、初期値近傍の点\(\mathbf{x}=\mathbf{x}^{(0)}\)が分かっている時、その近傍にある\(f(\mathbf{x})\)の極小値を与える\(\mathbf{x}=\mathbf{a}\)は適当な反復計算を行い、
\begin{equation}
\mathbf{a}=\lim_{k\to\infty}\mathbf{x}^{(k)}
\end{equation}
で与えられます。極値を求めるニュートン法を用いる場合、\(\mathbf{x}^{(k)}\)は漸化式として与えられ、
\begin{align}
\mathbf{x}^{(k+1)}&=\mathbf{x}^{(k)}+\mathbf{d}^{(k)} \\
\mathbf{d}^{(k)}&=-\left[H f\bigl(\mathbf{x}^{(k)}\bigr)\right]^{-1}\cdot \left[\nabla f\bigl(\mathbf{x}^{(k)}\bigr)\right]
\end{align}
として逐次的に与えられます。ここで、\(H f(\mathbf{x}), \nabla f\bigl(\mathbf{x}\bigr)\)は関数\(f(\mathbf{x})\)のヘッセ行列、傾き(Gradient)を表し、
\begin{equation}
\hat{H}f=
\begin{pmatrix}
\frac{\partial^2 f}{\partial x_1^2} & \frac{\partial^2 f}{\partial x_1 \partial x_2} &\cdots &\frac{\partial^2 f}{\partial x_1 \partial x_n} \\
\frac{\partial^2 f}{\partial x_2 \partial x_1} & \frac{\partial^2 f}{\partial x_2^2} &\cdots & \frac{\partial^2 f}{\partial x_2 \partial x_n} \\
\vdots & \vdots &\ddots & \vdots \\
\frac{\partial^2 f}{\partial x_n \partial x_1} & \frac{\partial^2 f}{\partial x_n \partial x_2} &\cdots &\frac{\partial^2 f}{\partial x_n^2} \\
\end{pmatrix}
,~~\nabla f=
\begin{pmatrix}
\frac{\partial f}{\partial x_1} \\
\frac{\partial f}{\partial x_2} \\
\vdots \\
\frac{\partial f}{\partial x_n}
\end{pmatrix}
\end{equation}
で与えられます。

特に\(f\)が\(x, y\)の2変数関数\(f(x,y)\)であるならば、
\begin{align}
\begin{pmatrix}
x^{(k+1)} \\
y^{(k+1)}
\end{pmatrix}
&=
\begin{pmatrix}
x^{(k)} \\
y^{(k)}
\end{pmatrix}
-\frac{1}{f_{xx}f_{yy}-f_{xy}f_{yx}}
\begin{pmatrix}
f_{yy} & -f_{xy} \\
-f_{yx} & f_{xx}
\end{pmatrix}
\begin{pmatrix}
f_x \\
f_y
\end{pmatrix}
\end{align}
ここで、
\begin{equation}
\hat{H}f
=
\begin{pmatrix}
f_{xx} & f_{xy} \\
f_{yx} & f_{yy}
\end{pmatrix}
,~~
\nabla f=
\begin{pmatrix}
f_x \\
f_y
\end{pmatrix}
\end{equation}
です。ここで、\(f_p\equiv\frac{\partial f}{\partial p}, ~f_{pq}\equiv\frac{\partial^2 f}{\partial p\partial q}, (p, q=x,y)\)と書きました。
微分を差分で近似するとします。\(x, y\)方向の刻み幅を\(h=h_x=h_y\)とすればそれぞれの偏微分は点\((x,y)\)近傍の7点を用いて
\begin{align}
f_x &= \frac{f(x+h, y) – f(x-h, y)}{2h} +O(h^2)\\
f_y &= \frac{f(x, y+h) – f(x, y-h)}{2h} +O(h^2)\\
f_{xx} &= \frac{f(x+h, y) – 2f(x, y)+ f(x-h, y)}{h^2} +O(h^2)\\
f_{xy} &=f_{yx}= \frac{1}{2h^2}\bigl[f(x+h, y) + f(x-h, y) + f(x, y+h) \\
&\hspace{1em}+ f(x, y-h)-2f(x,y)-f(x+h,y+h)-f(x-h,y-h)\bigr]+O(h^2) \\
f_{yy} &= \frac{f(x, y+h) – 2f(x, y)+ f(x, y-h)}{h^2} +O(h^2)
\end{align}
と書けます[2]。

導出


詳しくは述べませんが、1次元の問題における極小値を求めるニュートン法くらいは導いておきましょう。
多次元の場合は拡張すれば良く、考え方は変わりません。多次元では他の文献、例えば[1]を参考にして下さい。

関数\(f(x)\)を\(x=x^{(k)}\)周りでテイラー展開を行えば、
\begin{equation}
f(x)=f\bigl(x^{(k)}\bigr)+f’\bigl(x^{(k)}\bigr)\bigl(x-x^{(k)}\bigr)+\frac{1}{2}f^{\prime\prime}\bigl(x^{(k)}\bigr)\bigl(x-x^{(k)}\bigr)^2+O(\Delta^3)
\end{equation}
となります。ここで、\(\Delta=|x-x^{(k)}|\)とおきました。
今、欲しい解\(a\)は関数\(f(x)\)の極値なので、
\(\frac{df}{dx}=0\)を満たす\(x\)を探せばよいのです。よって、両辺を\(x\)で微分して、
\begin{align}
\frac{df(x)}{dx}=f’\bigl(x^{(k)}\bigr)+f^{\prime\prime}\bigl(x^{(k)}\bigr)\bigl(x-x^{(k)}\bigr)+O(\Delta^2)
\end{align}
を得ます。これが\(0\)になる\(x\)が解\(a\)なので、
\begin{equation}
\left. \frac{df(x)}{dx}\right|_{x=a}=f’\bigl(x^{(k)}\bigr)+f^{\prime\prime}\bigl(x^{(k)}\bigr)\bigl(a-x^{(k)}\bigr)+O(\Delta^2) = 0
\end{equation}
となります。今、\(O(\Delta^2)\)を無視すれば得られる解\(a\)は近似解\(a\approx x^{(k+1)}\)となるので、
\begin{equation}
f’\bigl(x^{(k)}\bigr)+f^{\prime\prime}\bigl(x^{(k)}\bigr)\bigl(x^{(k+1)}-x^{(k)}\bigr) = 0 \\
\end{equation}
を解いて
\begin{equation}
x^{(k+1)} = x^{(k)}-\frac{f’\bigl(x^{(k)}\bigr)}{f^{\prime\prime}\bigl(x^{(k)}\bigr)}
\end{equation}
となります。…ここまで来てしまうとニュートン・ラフソン法と同じですね。関数値がゼロになる点を探すのか、導関数値がゼロになる点を探すのかの違いなだけです。
多次元だと行列になってしまいシンプルではない形になり難しく見えますが、1次元では非常に単純です。

問題は1階(傾き)、2階導関数(ヘッセ行列)をどのように求めるかです。厳密な値が無い場合は近似的にしか得るしかありません。基本的にこれらの計算量は膨大になります。
最も簡単な方法は微分を差分に置き換えてしまうことですが、差分は余り良い方法とは言えません。

厳密なヘッセ行列は、例えば自動微分の考えで得ることが出来ます。例えば、Hyper-dual numbersによる二階偏微分の計算を参考にして得ることが出来ます。

また、引数が複素数で計算結果が実数で返ってくる関数\(f(z)\)の最小値を求めたいのであれば、\(z=x+iy\)として、\(f(x,y)\)の二変数関数としてその極致を探せば良いです。

2次元のプログラム


ここでは2次元の問題に限り、傾き、ヘッセ行列を差分で近似した場合のプログラムを記述します。

下のプログラムは関数
\begin{equation}
f(x,y)=x e^{-(x^2+y^2)/2}
\end{equation}
の、点\((x_0, y_0)=(-1.2, -0.3)\)近傍にある極値を求めるプログラムです。
グラフで示せば、以下の通りになります。
この関数の極値は黒点、初期値は赤点で示しています。

以下に実行例を示します。

$ gfortran main.f90
$ ./a.out
  -1.2000000000000000      -0.29999999999999999      -0.55840071716917605    
  -1.0000000016663813        3.4150669573473641E-013 -0.60653065971263342      4
$

1行目1,2,3列目はそれぞれ\(x,y\)の初期値, 関数\(f(x,y)\)の値を示しています。
また、2行目1,2,3,4列目は求まった\(x,y\)の値, 関数\(f(x,y)\)の値、そして収束に至るまでに行った繰り返しの回数を示しています。

参考文献


[1]塩浦昭義, 数理計画法 第13回
[2]Abramowitz and Stegun, “Handbook of Mathematical Functions”, http://people.math.sfu.ca/~cbm/aands/page_883.htm, http://people.math.sfu.ca/~cbm/aands/page_884.htm

反復計算における収束判定について

収束判定


漸化式
\begin{equation}
x^{(k+1)}=x^{(k)}+\Delta^{(k)}
\end{equation}
に従って、\(\lim_{k\to\infty}x^{(k)}=a\)が適当な定数に収束する問題を考えます。
絶対誤差\(\varepsilon_A\)、相対誤差\(\varepsilon_R\)とすると、数値計算を終了する時は、以下の不等式が満たされる時にすると良いです。
\begin{equation}
|x^{(k+1)}-x^{(k)}|\lt \varepsilon_A + \varepsilon_R(|x^{(k)}|+|x^{(k+1)}|)
\end{equation}

判定式の意味


上記判定式の意味を考えましょう。上の判定式は絶対誤差による評価と相対誤差による評価をまとめて評価する式になっています。

相対誤差が重要な場合

本当の解が\(a=100\)であるとします。その時、\(x^{(k)}=100.3, x^{(k+1)}=100.2\)であったと仮定すると、大雑把に計算して
\begin{align}
|x^{(k+1)}-x^{(k)}| &\lt \varepsilon_A + \varepsilon_R(|x^{(k)}|+|x^{(k+1)}|) \\
0.1 &\lt \varepsilon_A + \varepsilon_R\times 100
\end{align}
となります。右辺は本来2倍ですが、2倍はそんなに重要ではないので無視しています。もし仮に、\(\varepsilon\equiv\varepsilon_A=\varepsilon_R\)としていれば、
\begin{align}
0.1 &\lt 100\varepsilon_R
\end{align}
と近似できます。以上から、本当の解が1より十分大きい場合、相対誤差で収束を評価する式になっていると言えます。
つまり上記の問題設定の場合、\(\varepsilon_R\gt 10^{-3}\)にしてあれば”収束した”として判定します。

絶対誤差が重要な場合

本当の解が\(a=0.01000\)であるとします。その時、\(x^{(k)}=0.01002, x^{(k+1)}=0.01001\)であったと仮定すると、大雑把に計算して
\begin{align}
|x^{(k+1)}-x^{(k)}| &\lt \varepsilon_A + \varepsilon_R(|x^{(k)}|+|x^{(k+1)}|) \\
0.00001 &\lt \varepsilon_A + \varepsilon_R\times 0.01
\end{align}
となります。右辺は本来2倍ですが、2倍はそんなに重要ではないので無視しています。もし仮に、\(\varepsilon\equiv\varepsilon_A=\varepsilon_R\)としていれば、
\begin{align}
0.00001 &\lt 0.01\varepsilon_A
\end{align}
と近似できます。以上から、本当の解が1より十分小さい場合、絶対誤差で収束を評価する式になっていると言えます。
つまり上記の問題設定の場合、\(\varepsilon_A\gt 10^{-3}\)にしてあれば”収束した”として判定します。

参考


[1]杉山耕一朗, OBOROの収束判定条件の設定