複素数の平方根 #
複素数の平方根について具体的な計算方法を示します。
結果としては下記の通りになります。
$$ \begin{eqnarray} \sqrt{a+ib} = \left\{ \begin{aligned} &\sqrt{\frac{\sqrt{a^2+b^2}+a}{2}}+i~\text{sgn}(b)\sqrt{\frac{\sqrt{a^2+b^2}-a}{2}} &&(-\pi\lt\text{arg}(a+ib)\lt\pi)\\ &-\sqrt{\frac{\sqrt{a^2+b^2}+a}{2}}+i~\text{sgn}(b)\sqrt{\frac{\sqrt{a^2+b^2}-a}{2}} &&\left(\substack{-2\pi\lt\text{arg}(a+ib)\lt -\pi \\ \pi\lt\text{arg}(a+ib)\lt 2\pi}\right) \end{aligned} \right. \end{eqnarray} $$
ここで、
$$ \begin{eqnarray} \text{sgn}(x)= \left\{ \begin{aligned} & 1.0 && (x>0) \\ &-1.0 && (x<0) \end{aligned} \right. \end{eqnarray} $$
と定義しています。また、$\text{sgn}(0)=0$とします。
証明 #
$$ \begin{eqnarray} (a+ib)^{1/2} &&= (a^2+b^2)^{1/2}\cdot \exp{\left(i\frac{1}{2}\tan^{-1}\Bigl(\frac{b}{a}\Bigr)\right)} \\ &&= \left\{ \begin{aligned} &(a^2+b^2)^{1/2}\cdot \left( \sqrt{\frac{1+\cos\theta}{2}}+\sqrt{\frac{1-\cos\theta}{2}}\right) &&(0 \lt\text{arg}(a+ib)\lt \pi)\\ &(a^2+b^2)^{1/2}\cdot \left( \sqrt{\frac{1+\cos\theta}{2}}-\sqrt{\frac{1-\cos\theta}{2}}\right) &&(-\pi \lt\text{arg}(a+ib)\lt \pi)\\ &(a^2+b^2)^{1/2}\cdot \left(-\sqrt{\frac{1+\cos\theta}{2}}+\sqrt{\frac{1-\cos\theta}{2}}\right) &&(\pi \lt\text{arg}(a+ib)\lt 2\pi)\\ &(a^2+b^2)^{1/2}\cdot \left(-\sqrt{\frac{1+\cos\theta}{2}}-\sqrt{\frac{1-\cos\theta}{2}}\right) &&(-2\pi\lt\text{arg}(a+ib)\lt -\pi) \end{aligned} \right. \end{eqnarray} $$
ここで関係式
$$ \begin{align} \cos\frac{\theta}{2}&=\pm\sqrt{\frac{1+\cos\theta}{2}}=\pm\sqrt{\frac{1+\frac{a}{\sqrt{a^2+b^2}}}{2}}=\pm\sqrt{\frac{\sqrt{a^2+b^2}+a}{2}} \\ \sin\frac{\theta}{2}&=\pm\sqrt{\frac{1-\cos\theta}{2}}=\pm\sqrt{\frac{1-\frac{a}{\sqrt{a^2+b^2}}}{2}}=\pm\sqrt{\frac{\sqrt{a^2+b^2}-a}{2}} \end{align} $$
を利用して、
$$ \begin{eqnarray} (a+ib)^{1/2} &&= \left\{ \begin{aligned} &\sqrt{\frac{\sqrt{a^2+b^2}+a}{2}}+i~\text{sgn(b)}\sqrt{\frac{\sqrt{a^2+b^2}-a}{2}} &&(-\pi\lt\text{arg}(a+ib)\lt\pi)\\ &-\sqrt{\frac{\sqrt{a^2+b^2}+a}{2}}+i~\text{sgn(b)}\sqrt{\frac{\sqrt{a^2+b^2}-a}{2}} &&\left(\substack{-2\pi\lt\text{arg}(a+ib)\lt -\pi \\ \pi\lt\text{arg}(a+ib)\lt 2\pi}\right) \end{aligned} \right. \end{eqnarray} $$
を得ます。