シキノート (sikinote) (Solving the 1D Time-Independent Schrödinger Equation via the Finite Difference Method)
v1.0.1 ©2024 sikino

Schrödinger Equation (in atomic unit)

$$ \left[-\frac{1}{2}\frac{d^2}{dx^2}+V(x)\right]\psi(x)=E\psi(x) $$ $$ x=[x_a, x_b],\hspace{1em}\psi(x_a)=\psi(x_b)=0 $$ $$ x_n=nh+x_a \hspace{1em}(n=0,1\cdots, N),\hspace{1em} h=(x_b-x_a)/N $$ Basis: $$ \psi(x)=\sum_i c_i \varphi_i(x),\hspace{2em} \varphi_i(x)= \left\{ \begin{aligned} & \frac{1}{\sqrt{h}} &&(x_i-h/2 \lt x \lt x_i+h/2) \\ & \frac{1}{2\sqrt{h}} &&(x = x_i\pm h/2) \\ & 0 &&(\text{otherwise}) \end{aligned} \right. $$

Input parameters

lower limit of x-axis x_a
upper limit of x-axis x_b
Number of divisions N



Diagonalization method for real symmetric tridiagonal matrices
Lower bound for eigenvalue output
Number of eigenvalues to output

Graph Settings

Auto Graph Width (px)
Auto Graph Height (px)
Auto Aspect Ratio (x/y)
Auto Aspect Ratio (x/y) ,  ]
Auto y-axis [Lower, Upper] ,  ]

Eigenfunction Output Format


Results

Eigenvalues


            

Eigenfunctions