「物理学」カテゴリーアーカイブ

1次元調和振動子の直接的解法

1次元調和振動子の良く知られた解法は3種類あります。

  1. 昇降演算子を利用し\(\hat{a}\psi(x)=0\)から求める方法
  2. 微分方程式を境界条件の下、直接解く方法
  3. ハイゼンベルグ方程式から解く方法

です。ここでは直接的に解く2番目の方法を紹介します。

対象にする微分方程式は一次元調和振動子の原子単位系での表現
\(
\displaystyle \left[-\frac{1}{2}\frac{d^2}{dx^2}+Ax^2\right]\psi(x)=E\psi(x)
\)

です。ここでAは正の実数です。
この微分方程式を境界条件\(\left. \psi(x)\right|_{x\to \pm\infty}=0\)の下で解きます。

まとめますと、エネルギー\(E_n\)と固有関数\(\psi_n(x)\)は、
\(
\begin{align}
E_n&=\sqrt{2A}\left(n+\frac{1}{2}\right)\\
\psi_n(x)&=\frac{\left(2A\right)^{1/8}}{\pi^{1/4}\sqrt{2^n n!}}H_n( {\scriptsize (2A)^{1/4}}x)\exp\left(-\sqrt{\frac{A}{2}} x^2\right)\;\;\;\; (n=0,1,2,\cdots)
\end{align}
\)

です。


導出


両辺を\(-2\)を掛けて式変形して
\(
\displaystyle \left[\frac{d^2}{dx^2}-2Ax^2+2E\right]\psi(x)=0
\)

常套手段ですが、この微分方程式を満たすべき関数\(\psi(x)\)の漸近形を考えます。
何とか解ける部分だけを解いていこうという方針です。

漸近での解


もしも\(x\to \infty\)だったならば、上式の\(2E\)の項は定数であるため、\(-2Ax^2\)と比べて無視できるようになるはずです。
ただし、微分の項\(\frac{d^2}{dx^2}\)は比較することはできないため無視はしないで置いておきます。
つまり、関数\(\psi(x)\)は\(x\to \infty\)の漸近で
\(
\displaystyle \left[\frac{d^2}{dx^2}-2Ax^2\right]\psi(x)=0
\)

の形の微分方程式を満足しなければなりません。
式変形して
\(
\displaystyle \frac{d^2}{dx^2}\psi(x)=2Ax^2\psi(x)
\)

関数を2回微分したら\(x^2\times\)(自分自身)が出てくる、という性質を持つ関数は
\(
\displaystyle \psi(x)= C \exp(Bx^2)
\)

という形で掛けそうです。実際にこの形の2階微分は
\(
\begin{align}
\frac{d\psi}{dx}&=C\cdot 2Bx \exp(Bx^2) \\
\frac{d^2\psi}{dx^2}&=C\cdot 2B(1+2Bx^2)\exp(Bx^2) \\
&\sim C\cdot 4B^2x^2\exp(Bx^2)
\end{align}
\)
です。今、2階微分で括弧内に定数”1”が出てきていますが、\(x\to \infty\)の漸近を考えているのでこの定数は\(2Bx^2\)と比較して無視されるはずです。よって最後の式変形をしています。

漸近での微分方程式に代入すると、
\(
\begin{align}
\frac{d^2}{dx^2}\psi(x)&=2Ax^2\psi(x) \\
C 4B^2x^2\exp(Bx^2)&=2Ax^2 C \exp(Bx^2) \\
2C(2B^2-A)x^2\exp(Bx^2)&=0
\end{align}
\)
上記の方程式は\(x\)の値に依らず常に満たされなければなりません。
よって、\(2C=0\)もしくは\(2B^2-A=0\)である必要があります。
\(C=0\)の解は波動関数が至る所でゼロである自明な解です。なので物理的には適しません。

※漸近でゼロであるだけで漸近じゃないところではokなんじゃないの?という疑問が出てきますが、\(C=0\)の場合、漸近で\(\psi(x)=0\)であり、その微分\(\frac{d\psi}{dx}=C 2Bx \exp(Bx^2)\)もゼロです。波動関数は全領域に渡って滑らかに続いていなければならないため、いつまでたっても波動関数はゼロです。ということは、存在確率がゼロ、有限にはならないつまらない解なのです。通常、\(x\to \infty\)の漸近で\(\psi(x)=0\)という条件は入れますが、その微分\(\frac{d\psi}{dx}\)もゼロという条件は入れません。

なので物理的に意味のある解は
\(
\begin{align}
2B^2-A=0 \\
\to B=\pm \sqrt{\frac{A}{2}}
\end{align}
\)
というBでなければなりません。よって波動関数\(\psi(x)\)は漸近で2つの解の線形結合として書かれ、
\(
\displaystyle \psi(x)= C_1 \exp\left(-\sqrt{\frac{A}{2}} x^2\right)+C_2 \exp\left(\sqrt{\frac{A}{2}}x^2\right)
\)

という形で記述できます。
しかし、境界条件\(\left. \psi(x)\right|_{x\to \pm\infty}=0\)を満たさなければならない場合、係数\(C_2=0\)である必要があります。よって波動関数の漸近形は
\(
\displaystyle \psi(x)= C\exp\left(-\sqrt{\frac{A}{2}} x^2\right)
\)

と求められます。

漸近ではないところの解


漸近では波動関数は
\(
\displaystyle \psi(x)= C\exp\left(-\sqrt{\frac{A}{2}} x^2\right)
\)

という形を満たさなければならないことが分かりました。残りは漸近ではない場所の解です。
定数変化法を使います。定数をxに依存する関数として全領域に渡る波動関数を
\(
\displaystyle \psi(x)= f(x)\exp\left(-\sqrt{\frac{A}{2}} x^2\right)
\)

と仮定します。この操作は\(\psi(x)\)に関する方程式から\(f(x)\)に関する微分方程式に焼直す操作です。
全領域に渡る波動関数の満たすべき微分方程式は
\(
\displaystyle \left[\frac{d^2}{dx^2}-2Ax^2+2E\right]\psi(x)=0
\)

なので、これに代入します。
計算過程で出てくる文字を減らすために、\(B=-\sqrt{\frac{A}{2}}\)として、\(B\)で記述していきます。
\(
\begin{align}
&\left[\frac{d^2}{dx^2}-2Ax^2+2E\right]\psi(x)= \\
&\;\;\;\;\;\;\;\left\{\frac{d^2f}{dx^2}+4Bx\frac{df}{dx}+(4B^2-2A)x^2+(2B+2E)f\right\}e^{Bx^2}=0
\end{align}
\)
と求める事ができ、\((4B^2-2A)=0\)を利用すると、\(f(x)\)の満たすべき微分方程式は、
\(
\displaystyle \frac{d^2f}{dx^2}+4Bx\frac{df}{dx}+(2B+2E)f=0
\)

と求まります。
この微分方程式の解はエルミートの微分方程式と呼ばれる形をしています。
エルミートの微分方程式は
\(
\displaystyle \frac{d^2 H(x)}{dx^2}-2x\frac{dH(x)}{dx}+2nH(x)=0
\)

の微分方程式を満たす直交多項式です[1]。
そのままエルミートの微分方程式を今回の問題に適応することはできません。なぜならば1階微分の係数が違っているからです。
なので変数変換により、\(x=\alpha y\)とおいて、一階微分の係数\(4B\)をちょうど\(-2\)にする定数\(\alpha\)を探しましょう。
\(
\begin{align}
\frac{d}{dx}&=\frac{dy}{dx}\frac{d}{dy}=\frac{1}{\alpha}\frac{d}{dy}\\
\frac{d^2}{dx^2}&=\frac{1}{\alpha^2}\frac{d^2}{dy^2}
\end{align}
\)
を代入して、
\(
\displaystyle \frac{1}{\alpha^2}\frac{d^2 f(x)}{dy^2}+4By\frac{df(x)}{dy}+(2B+2E)f(x)=0
\)

xとyが混在しているので気持ち悪いです。\(f(x)\to f(y)\)とおきましょう。そして最後に求められたyを用いたf(y)をxの式f(x)に焼直します。
両辺に\(\alpha^2\)を掛けると
\(
\displaystyle \frac{d^2 f(y)}{dy^2}+4B\alpha^2 y\frac{df(y)}{dy}+(2B+2E)\alpha^2 f(y)=0
\)

です。今、一階微分の係数を\(-2\)にする定数\(\alpha\)を探していました。
なので、
\(
\begin{align}
4B\alpha^2&=-2 \\
\alpha&=\pm\sqrt{-\frac{1}{2B}}=\pm\left(\frac{1}{2A}\right)^{1/4}
\end{align}
\)
となります。ここの\(\alpha\)のプラスマイナスはどちらでもいいです。
プラスに取ることにすれば、\(f(y)\)についての微分方程式は、
\(
\displaystyle \frac{d^2 f(y)}{dy^2}-2 y\frac{df(y)}{dy}-\left(\frac{B+E}{B}\right) f(y)=0
\)

であるため、エルミートの微分方程式の形になりました。
エルミートの微分方程式は\(f(y)\)に掛かる項、すなわち\(-\left(\frac{B+E}{B}\right)\)の部分が\(2n\), (\(n=0,1,2,\cdots\))である時だけ解を満たします。
よって、
\(
\begin{align}
-\frac{B+E}{B}&=2n\\
E=E_n&=-2B(n+\frac{1}{2})\\
&=\sqrt{2A}(n+\frac{1}{2})\;\;\; (n=0,1,2,\cdots)
\end{align}
\)
を満たすエネルギー\(E=E_n(n=0,1,2,\cdots)\)でなければ解は存在しません。
その時の解\(f(y)\)も\(n\)で番号付けされて、
\(
f(y)=H_n(y)\;\;\; (n=0,1,2,\cdots)
\)

と記述され、右辺はエルミート多項式と呼ばれます。
エルミート多項式\(H_n(y)\)は
\(
\begin{align}
H_0(y)&= 1\\
H_1(y)&= 2y\\
H_2(y)&= 4y^2-2\\
H_3(y)&= 8y^3-12y\\
H_4(y)&= 16y^4-48y^2+12\\
H_5(y)&= 32y^5-160y^3+120y\\
H_6(y)&= 64y^6-480y^4+720y^2-120\\
\ldots
\end{align}
\)
と言う関数です。三項漸化式
\(
H_n(y)=2yH_{n-1}(y)-2(n-1)H_{n-2}(y)
\)

を用いて\(n=2\)以上のエルミート多項式は記述されます。

以上より微分方程式を満たす解とエネルギーは、整数(\(n=0,1,2,\cdots\))で番号付けされた解を持つことが分かりました。
\(y\)を変数変換に従い\(x\)に戻します。
\(
\begin{align}
x&=\alpha y \\
&\alpha=\left(\frac{1}{2A}\right)^{1/4}
\end{align}
\)
なので、
\(H_n(y)=H_n(x/\alpha)\)
です。
漸近形での波動関数と合わせて、本当に求めたかった解\(\psi(x)\)は、
\(
\begin{align}
\displaystyle \psi(x) &= f(x)\exp\left(-\sqrt{\frac{A}{2}} x^2\right) \\
&=C H_n(x/\alpha)\exp\left(-\sqrt{\frac{A}{2}} x^2\right)
\end{align}
\)

であることが分かりました。定数\(C\)の自由度がありますが、これは物理的に合った条件を用いてなされます。

おさらい


解きたかった問題は
\(
\displaystyle \left[-\frac{1}{2}\frac{d^2}{dx^2}+Ax^2\right]\psi(x)=E\psi(x)
\)

を境界条件\(\left. \psi(x)\right|_{x\to \pm\infty}=0\)の下で解くことでした(A>0)。

この微分方程式を何とか解くために、まず\(x\to \pm\infty\)で解の満たすべき形を考えました。
その後、全領域で境界条件を満たす解を定数変化法によって求めました。
計算の結果、微分方程式の解は与えられた適当なエネルギー\(E\)に対していつも存在するわけではなく、特別な\(E=E_n\)で番号付けされた値でなければ解が存在しないことが分かりました。
\(n\)番目のエネルギー\(E_n\)と関数\(\psi_n(x)\)は、
\(
\begin{align}
E_n&=\sqrt{2A}\left(n+\frac{1}{2}\right) \\
&\psi_n(x)= C_n H_n(x/\alpha)\exp\left(-\sqrt{\frac{A}{2}} x^2\right) \\
&\;\;\;\;\alpha=\left(2A\right)^{-1/4}
\end{align}
\)

です。与えられた条件下では規格化までは追求していないのでここでお仕舞いですが、規格化を考えてみましょう。

規格化


波動関数\(\psi_n(x)\)を規格直交化(正規直交化とも言う)します。
規格化は、全空間での存在確率
\(
\displaystyle \int_{-\infty}^{\infty}|\psi(x)|^2dx
\)

を1にすること。
直交化は異なる状態間をかけ合わせて積分した時ゼロになること・・・すなわち内積をゼロにします。
\(
\displaystyle \int_{-\infty}^{\infty}\psi_m^*(x)\psi_n(x)dx=C\cdot\delta_{mn}
\)

ここで\(C\)は任意の定数で、\(\delta_{mn}\)はクロネッカーのデルタを表します。
両方を考慮すると、規格直交化とは、
\(
\displaystyle \int_{-\infty}^{\infty}\psi_m^*(x)\psi_n(x)dx=\delta_{mn}
\)

を満たすように係数を決定します。

実際に波動関数を代入すると、
\(
\begin{align}
\int_{-\infty}^{\infty}\psi_m^*(x)\psi_n(x)dx&= C_m^*C_n \int_{-\infty}^{\infty} H_m(x/\alpha)H_n(x/\alpha)\exp\left(-\sqrt{2A} x^2\right)dx
\end{align}
\)

変数変換を行います。
\(
\begin{align}
x&=\alpha y \\
&\alpha=\left(\frac{1}{2A}\right)^{1/4}
\end{align}
\)
より、
\(
\begin{align}
& C_m^*C_n \int_{-\infty}^{\infty} H_m(x/\alpha)H_n(x/\alpha)\exp\left(-\sqrt{2A} x^2\right)dx \\
&= C_m^*C_n \int_{-\infty}^{\infty} H_m(y)H_n(y)\exp\left(-\sqrt{2A}\alpha^2y^2\right)\cdot \alpha dy \\
&= C_m^*C_n\alpha \int_{-\infty}^{\infty} H_m(y)H_n(y)\exp\left(-y^2\right) dy \\
\end{align}
\)
ここで、エルミート多項式の特性を使います。エルミート多項式の関係式の中に、
\(
\displaystyle \int_{-\infty}^{\infty} H_m(x)H_n(x)\exp\left(-y^2\right) dx=2^n n!\sqrt{\pi}\delta_{mn}
\)

という関係式があります。
なので、これを使うと、
\(
\displaystyle \int_{-\infty}^{\infty}\psi_m^*(x)\psi_n(x)dx=C_m^*C_n\alpha 2^n n!\sqrt{\pi}\delta_{mn}
\)

と求められます。今、\(({\mbox 右辺})=\delta_{mn}\)にしたいので、係数について、
\(
\begin{align}
C_m^*C_n\alpha 2^n n!\sqrt{\pi}\delta_{mn}&=\delta_{mn} \\
(C_m^*C_n\alpha 2^n n!\sqrt{\pi}-1)\delta_{mn}&=0
\end{align}
\)
にするように\(C_n\)を決定すればよいことになります。
クロネッカーのデルタより、\(m=n\)以外の時は係数に依らずゼロになるため、自明です。
なので、\(m=n\)の時,
\(
\begin{align}
|C_n|^2\alpha 2^n n!\sqrt{\pi}&=1\\
\to |C_n|&=\sqrt{\frac{1}{\sqrt{\pi}2^n n!\alpha}} \\
C_n&=\frac{1}{\sqrt{\alpha}\pi^{1/4}\sqrt{2^n n!}}\cdot \exp(i\theta)
\end{align}
\)
と規格化定数が求められます。位相\(\exp(i\theta)\)の任意性がありますが、この位相に特に意味は無く、自由に選べます。よって、式が簡単になる\(\theta=0\)を取ることにします。
以上の結果から、規格直交化された波動関数は\(\psi_n(x)\)は、
\(
\begin{align}
\psi_n(x)&=\frac{1}{\sqrt{\alpha}\pi^{1/4}\sqrt{2^n n!}}H_n(x/\alpha)\exp\left(-\sqrt{\frac{A}{2}} x^2\right)\\
\alpha&=\left(2A\right)^{-1/4}
\end{align}
\)
となります。\(\alpha\)を使わず、\(A\)だけで表せば、
\(
\displaystyle \psi_n(x)=\frac{\left(2A\right)^{1/8}}{\pi^{1/4}\sqrt{2^n n!}}H_n( {\scriptsize (2A)^{1/4}}x)\exp\left(-\sqrt{\frac{A}{2}} x^2\right)
\)

です。

参考文献

[1]小野寺嘉孝著「物理のための応用数学」裳華房 p.71

バレル内部でのBB弾の方程式

バレル内部でのBB弾の運動方程式です。

目的は、

BB弾は何秒間バレル内部に存在しているのか?
バレルが長いと減速になりうるのか?

を知ることです。詳細は弾道計算本をご覧ください。

弾道計算(BB弾)の理論
弾道計算(BB弾)の結果
弾道計算の結果2, 比較と詳細データ
弾道計算(BB弾)のコード(fortran90)
弾道計算のコード(Excel)
バレル内部でのBB弾の方程式←今ここ


電動ガンの場合です。
バレル内部1
空気抵抗は初速0[m/s]から90[m/s]前後にまで加速されるわけですから、空気抵抗の粘性抵抗、慣性抵抗どちらの項も無視することはできないでしょう。

空気の漏れも考えます。

この条件下では、バレル内部の運動方程式は以下のように導くことができます。

内部圧力変化と力


ピストン-BB弾間の圧力変化による力\(F_V(t)\)は、
\(
F_V(t)=S\cdot P(t)
\)

と書けます。ここで\(P(t)\)はピストン-BB弾間の内部圧力です。
\(P(t)\)は、断熱変化を仮定すると、ピストン-BB弾間体積\(V(t)\)を用いて
\(
P(t)V^{7/5}(t)=\text{const}
\)

の関係があります。体積\(V(t)\)は
\(
V(t)=x(t)S_b-x_0(t)S_s
\)

と書けます。ここで、ピストンの位置による時間変化を\(x_0(t)\)、BB弾の位置を\(x(t)\)、バレルの断面積を\(S_b\)、シリンダーの断面積を\(S_s\)としました。
この式は時刻に依存せずに決まるので、時刻\(t=0\)の時に大気圧\(P_0\)で、体積\(V_0\)であれば、任意の時刻での圧力\(P(t)\)は
\(
\displaystyle P(t)=P_0 \left(\frac{V_0}{V(t)}\right)^{7/5}
\)

と書けます。

空気の漏れについて


十分短い時間の間、時刻\(t\)において内部圧力\(P(t)\), 空気の密度\(\rho\)とすると、漏れ出る空気の速度\(v(t)\)はベルヌーイの定理から
\(
\begin{align}
P(t)&=\frac{1}{2}\rho v(t)^2+P_0 \nonumber \\
&\to v(t)=\pm \sqrt{\frac{2}{\rho}(P(t)-P_0)}
\end{align}
\)
が成立するとします。厳密には、ピストンの速度は漏れ出る空気の速度に対して無視できるほど小さい、という仮定の下で成立します。漏れ出る流量\(Q\)は、バレル-BB弾の隙間の断面積\(A\)、実験とのズレを調節する無次元の流量係数\(c’\)を用いて\(Q=c’ A v(t)\)と書けます。
また、断熱過程を圧力-体積の関係を用いたいので、漏れ出る空気はBB弾-ピストン間の体積の増加として扱います。

フルシリンダーの場合の運動方程式


その他、空気抵抗による力を入れると、BB弾の位置\(x(t)\), ピストンの位置\(x_0(t)\), 体積\(V(t)\)の運動方程式は
\(
\begin{align}
m\frac{d^2}{dt^2}x(t)&=\left[P(t)-P_0\right]S_b-\frac{1}{2}C_d \rho \pi R^2 |v(t)|^2\cdot\frac{v(t)}{|v(t)|} \label{bbin1}\\
m_s\frac{d^2}{dt^2}x_0(t)&=-k\left[x_0(t)-x_B-l\right]-[P(t)-P_0]S_s -F_f\label{bbin2} \\
\frac{d}{dt}V(t)&=v(t)S_b-v_0(t)S_s+c'(S_b-\pi R^2)\mathrm{sgn}(P(t)-P_0)\sqrt{\frac{2}{\rho}|P(t)-P_0|} \label{bbin3}
\end{align}
\)
と導くことが出来ます。

ここで、\(P_0\)は大気圧、\(\eta\)は粘性率、\(R\)はBB弾の半径、\(C_d\)は抗力係数、\(\rho\)は空気の密度, \(S_b\)はバレルの断面積、\(S_b\)はシリンダーの断面積、\(k\)はピストンのばね定数、\(l\)はばねの自然長、\(F_f\)はピストン-シリンダーの摩擦、\(v(t),v_0(t)\)はそれぞれBB弾の速度、ピストンの速度を意味します。

空気抵抗に関する詳細は球体の空気抵抗と係数をご覧ください。

ここで1つ言えることは、外部と内部の圧力が一定になる最適なバレル長というものが存在する、ということです。

2019/01/20 追記)
本の頒布日より1年以上たちました。
計算結果は載せないつもりでしたが、載せたくなりましたので少しだけ載せておきます。
まず、実測データと上で立てたモデルの運動方程式の比較をします。
比較対象はインターネット上で公開されていた二つのデータです。

実測データとの比較



1つ目(図の←)はさばなび様で公開されていた記事
https://www.saba-navi.com/2015/10/29/laboratory_work_barrel_cut/で実測されていたデータで、バレル長の長さと初速の関係です。ただし、既にリンク切れのようです。
ピストンの重さの記述が無かったので、典型的とされている重さ25gを仮定して計算しています。

2つ目(図の→)は石岡様のホームページ
○電動ガンバレル、シリンダの組み合わせによる初速実験
の結果との比較です。

どちらの計算結果もまぁまぁ合っていることから、私が仮定したモデルは見当はずれなものではないということが分かるかと思います。

バレル内部の様子


さて、上のモデルが正しいとした時、運動方程式を解いてバレルの動きや内圧を考えてみましょう。
解いてみますと、こういった図が得られます。

図は、東京マルイM16を想定した時のBB弾の位置、速度、ピストンの位置、内圧の時間変化です。
計算のパラメータは、
BB弾の重さ0.20g
ピストンの重さ24g
ばね定数431N/m
ばねの自然長150mm
押し切られた時のばねの長さ120mm
BB弾の半径5.95mm
バレルの直径6.05mm
とした時の結果です。
この場合、生み出せる最高初速は96m/s(バレル長63cmの時)。
例えばバレル長が50cmの時、ピストンが動いてからBB弾が射出されるまでにかかる時間は0.013秒ということが分かります。
すなわち、上のピストンの重さやBB弾の重さ、ばねの強さ、シリンダー容量の場合は最適なバレル長は63cmであるということです。
また、内圧の上昇によるピストンのブレーキなども計算できていることが分かるかと思います。

また、漏れ出る空気の量は\(3000[\mathrm{mm^3}]\)だということが見積もられました。この量はM16の場合は本来のシリンダー容量の15%程度です。

典型的なバレル長である50cmの場合、BB弾は射出されるまでに約0.013秒かかります。内圧の上昇によるブレーキがかからず、同じ過程でばねが引かれると仮定すると、ピストンは約0.010秒で戻ると考えられます。
理論上の効率的な射出サイクルの限界は

(1発)÷(0.013秒+0.010秒)≒ 43発/秒

という事です。現在販売されている東京マルイのハイサイクルは25発/秒なので、理論上あと1.7倍早くすることが可能です。

BB弾の重さを0.25gにした結果や、ばねの強さを変えた時の結果は
弾道計算本として計算結果をまとめた本に載せているので、そちらをご参照ください。本の詳細については弾道計算本の自家通販をご覧ください。
また時間が経ったらここに載せる…かもしれません。

補遺


補遺1
理想気体として扱える条件は、
低い気圧(分子の数が少なく、衝突等が無視できる)かつ高い温度(分子間力が分子の運動エネルギーに比べて無視できる)
です。
どうやら実在気体では10気圧以下、室温以上でこの条件は良く満たされ、理想気体とのずれは1%以内のようです[1]。
[1]を引用すると、

一般に,沸点の低い酸素・窒素・水素・ヘリウム等は,室温またはそれ以上の温度で10atm以下の圧力の場合,理想気体の値の1%以内で理想気体に近い性質を示す。

とあります。ピストンで空気が圧縮されたとき、BB弾とピストン間の圧力が10気圧以上にならなければ良い近似だと言えるでしょう。

参考文献


[1] 実在気体 -第2節 気体の状態方程式
[2]PERFECT HIT -TOKYO MARUI

『集弾性アップへの道』 BB弾とバレル内部に隙間があることが写真で確認できます。

非線形Schrödinger方程式のソリトン解

非線形シュレディンガー方程式
\(
\displaystyle i\frac{\partial \Psi}{\partial t}=-\frac{1}{2}\frac{\partial^2 \Psi}{\partial x^2}-g|\Psi|^2\Psi
\)

にはある解析解が存在します。それがソリトン(soliton)解と呼ばれるもので,上式のソリトン解は
\(
\displaystyle \Psi(x,t)=\sqrt{\Omega}\ {\rm sech}\left\{\sqrt{\Omega}\left(x\sqrt{g}-\frac{gV}{2}t\right)\right\}\cdot \exp\left\{i\frac{V\sqrt{g}}{2}x-i\frac{g}{2}\left(\frac{V^2}{4}-\Omega\right)t\right\}
\)

です。(\(g>0\),\(\Omega\):ソリトンの振幅、\(V\):ソリトンの速度に関するパラメータ、ソリトン自体の速度は\(V\sqrt{g}/2\))

[adsense1]

ソリトンの歴史的背景


「非線形」とは重ね合わせの原理が成り立たない系です。

1844年、スコットランドのJ.Scott-Russellによって孤立した波(solitary wave)を観測した事が報告されました J.Scott-Russellによる報告”Report on Waves”(リンク先のSR44.pdf, 16.3MB))。
当時の認識では、波は波動方程式で記述され、その波の速度\(v\)は\(v=f\lambda\)の元、一定である。だからパルス状の波は異なる波長の波の重ね合わせで書けているはずで、時間と共に分散していくはず。なのになぜ時間が経過しても孤立した波が存在できるのか?という事で大きな論争となりました。

60年後の1895年、オランダのKortewegとde Vriesによって”浅い水の波”を記述する非線形偏微分方程式(KdV方程式)が提出され、この方程式の特解として孤立波が与えられました。
孤立波は、

  1. 空間的に局在した波が、その性質(速さや形)を変えずに伝搬する
  2. 孤立波は互いの衝突に対して安定であり、各々の個別性を保持する

という性質を持つ非線形波動と定義されます[1]。
2番目の、粒子のような性質を持つことから、solitary に接頭語-on をつけ、soliton(ソリトン)と名づけられました。

その後、1981年に佐藤幹夫がソリトンの統一理論(佐藤理論やKP理論)を発表しました。
これによりソリトン方程式(ソリトンを記述し,かつ厳密に解ける方程式)に決着が付きました。
ソリトン方程式は非線形なのに厳密に解ける、可積分系である。

ソリトン方程式を解く方法は([4]を引用しますが)

上で指摘したように,logistic方程式が解けるからくりとソリトン方程式が解けるからくりはよく似ています.違いは,logistic方程式が変数変換一発で線形常微分方程式になってしまったのに対し,ソリトン方程式の場合は変数変換で双線形形式になり,双線形形式の解として行列式が現れ,行列式の中身に簡単な線形方程式が現れるというところです.しかし,離散化で保存するべき構造は明らかです.まず,解の中身の線形方程式を離散化し,行列式の構造をそのまま使って双線形形式を作る.最後に変数変換して非線形のレベルに戻ればよい.

となるそうです。

また、ソリトン方程式の特徴である、無限個の対称性(無限個の保存量)は、Gardner変換という変換をすることで証明できるそうです[5]。
これ以上はこの分野の専門家ではないので話せません。

ちなみに津波もソリトンの一つとみなせます。

ソリトン解が生まれるイメージ


なぜソリトン解が生まれるのでしょうか。
今、孤立した波(空間的に凸)を考えます。この時、

エネルギー的に安定になろうとして密度を均一にするために広がろうとする効果

粒子間を結び付ける引力相互作用(例えば水面だったら水と水との分子間力等)のため集まろうとする効果

のつり合いによって、丁度均衡が保たれるとき、このソリトン解が生まれます。

・・・実は、ソリトン解には2種類あります。
それは明るい(Bright)ソリトン解と暗い(Dark)ソリトン解です。
今まで話していたのは全て明るいソリトン解です。
暗いソリトン解とはどういったものでしょう。
暗いソリトン解とは、ある部分が空間的に凹んでいる、孤立した解です。

エネルギー的に安定になろうとして密度を均一にするためにその凹みを埋めようとする効果

粒子間の斥力相互作用のために粒子間を避けようとする効果

のつり合いによって、丁度均衡が保たれるとき、この暗いソリトン解が生まれます。
暗いソリトン解が生まれるのは斥力相互作用の時で、斥力相互作用を持つ系というのは、調べた限りでは量子力学のボーズ・アインシュタイン凝縮体で、暗いソリトンは渦ソリトンという形で現れるそうです。これ以上の具体例は分かりませんでした。もしも具体例を知っているという方は教えていただければ幸いです。
暗いソリトンの解析解は参考文献[1]の本に紹介されているので、それをご参考にしてください。

非線形シュレディンガー方程式におけるソリトン解


では本題の、非線形シュレディンガー方程式における(明るい)ソリトン解を考えましょう。
下の形の非線形シュレディンガー方程式を考えます。
\(
\displaystyle i\frac{\partial \Psi}{\partial t}=-\frac{1}{2}\frac{\partial^2 \Psi}{\partial x^2}-g|\Psi|^2\Psi
\)

ここで、\(\Psi=\Psi(x,t)\)で、\(g\)はの値で相互作用の強さ(この場合、引力相互作用)を表します。

この非線形シュレディンガー方程式のソリトン解\(\Psi(x,t)\)は、
\(
\displaystyle \Psi(x,t)=\sqrt{\Omega}\ {\rm sech}\left\{\sqrt{\Omega}\left(x\sqrt{g}-\frac{gV}{2}t\right)\right\}\cdot \exp\left\{i\frac{V\sqrt{g}}{2}x-i\frac{g}{2}\left(\frac{V^2}{4}-\Omega\right)t\right\}
\)

であり、\(\Omega\)はソリトンの振幅の大きさ、\(V\)はソリトンの速度を決めるパラメータを表します。ソリトン自体の速度は\(V\sqrt{g}/2\)となります([2]を参考)。
また、\({\rm sech}(x)\)は双曲線関数の一種(双曲線正割と呼ばれる)であり、
\(
\displaystyle {\rm sech}(x)=\frac{1}{\rm cosh(x)}=\frac{2}{e^{x}+e^{-x}}
\)
を表します。

解析解のプロット

解析解をプロットします。gnuplotコードは下のほうに載せておきます。
\(g=2, V=1, \Omega=1\)とすると、以下の振る舞いが観測されます。
ここで紫はソリトン解の実部、緑は虚部、青は絶対値2乗を表します。
動画は1枚当たり原子単位系で0.1秒、合計で10秒間のシミュレーションです。
また、このソリトンの速度は\(V\sqrt{g}/2\sim 0.7071\)です。
soliton1

[adsense2]

gnuplotコード


非線形シュレディンガー方程式のソリトン解(解析解)を出力します。
gnuplot上で下のスクリプトを実行してください。
(ただし、gnuplot ver4.6以降に限ります。)

omega=1e0
V=1e0
g=2e0
x0=-5e0 # initial position

set xr[-10:10]
set yr[-1.5:1.5]
set samples 1000
set xl "x[a.u.]"

sech(x)=2e0/(exp(x)+exp(-x))
amp(x,t)=sqrt(omega)*sech(sqrt(omega)*((x-x0)*sqrt(g)-g*V*t*0.5e0))
phase(x,t)=V*sqrt(g)*x*0.5e0-g*t*0.5e0*(V*V*0.25e0-omega)
soliton(x,t)=amp(x,t)*exp({0e0,1e0}*phase(x,t))


#set term gif animate delay 10 optimize size 960,720
#set output 'movie.gif'
do for[i=0:100:2]{
   t=i*0.1e0
   plot abs(soliton(x,t))**2 lw 3 lc 1 lt 1 ti sprintf("|\psi|^2, t=%2.1f",t),\
        real(soliton(x,t)) lw 3 lc 2 lt 2 ti "Real",\
        imag(soliton(x,t)) lw 3 lc 3 lt 3 ti "imag"
}
#set out
#set terminal wxt enhanced

もっとソリトンについて知りたい方はまず参考文献[3]を読むことをお勧めします。
その後、[4]を読み、[5]を読み、[1]の本を読むのが良いと思われます。
[3],[4]は簡単な表現を用いてソリトンとその後の発展について記述されています。

参考文献


[1]和達三樹著 『非線形波動 (現代物理学叢書) 』岩波書店 (2000年) p.7
[2]和達三樹著 『非線形波動 (現代物理学叢書) 』岩波書店 (2000年) p.29

[3]ソリトンの数学 – Researchmap
[4]ソリトン ~ 不思議な波が運んできた,古くて新しい数学の物語 ~
[5]〔連載〕非線形波動―ソリトンを中心として―第5章 逆散乱法


↑画像のフォントはキユマヤ園様による数式フォント -びゅんびゅん→SSSです!


球体の抗力係数

説明


本稿では、完全な球体に働く抗力係数について述べます。
ここでは概要だけを説明します。詳細は以下のPDFをご覧ください。

https://slpr.sakura.ne.jp/qp/supplement_data/drag_coefficient_air/drag_coefficient.pdf

概要

速度\(v(=|\mathbf{v}|)\)で動く半径\(R\)の完全な球体に働く空気抵抗力の大きさ\(F_d(=|\mathbf{F}_d|)\)は,
\begin{align}
F_d =\frac{1}{2} C_d(R_e) \rho \pi R^2 v^2
\end{align}
と書けます. 空気抵抗力\(\mathbf{F}_d\)は, 球体の速度方向と反対に働くので, 方向を含めれば
\begin{align}
\mathbf{F}_d =-\frac{1}{2} C_d(R_e) \rho \pi R^2 v^2\frac{\mathbf{v}}{v}
\end{align}
と書けます.

つまり、重力加速度\(g\)の重力下における質量\(m\)の完全な球体に対する運動方程式は
\begin{align}
m\frac{d^2}{dt^2}\mathbf{r} =-mg\mathbf{k}-\frac{1}{2} C_d(R_e) \rho \pi R^2 v^2\frac{\mathbf{v}}{v}
\end{align}
となります。ここで、\(\mathbf{k}\)は重力の方向の単位ベクトル(多くの場合では鉛直上向きを\(z\)軸の正の方向、単位ベクトル\(\mathbf{k}\)とするので、負号が付いています)です。
速度が非常に遅い極限\((R_e\to 0)\)においては、\( C_d(R_e)|_{R_e\to 0}\to \frac{24}{R_e}\)となります。

完全な球体の抗力係数\(C_d\)における近似式は、レイノルズ数を\(R_e\)として以下の通り与えられます。

  • \(R_e\lt 2\times 10^5\)層流領域のみ
    \begin{align}
    C_d(R_e)&=\left[\frac{24}{R_e}(1+0.15 R_e^{0.687})\right]+\frac{0.42}{1+(\frac{42500}{R_e^{1.16}})},~~~\mbox{式(1)}
    \end{align}
    ただし、\(R_e \lt 2\times 10^5~~\mbox{and}~~K_n \lt 0.01 ~~\mbox{and}~~ M_a\to 0 \)
  • \(R_e\lt 2\times 10^5\)の層流領域のみ、マッハ数\(M_a\)依存性込み
    \begin{align}
    C_d(R_e)
    =\frac{24}{R_e}(1+0.15 R_e^{0.687})H_M
    +\frac{0.42 C_M}{1+(\frac{42500}{R_e^{1.16C_M}})+\frac{G_M}{R_e^{0.5}}} ,~~~\mbox{式(2)}
    \end{align}
    ここで、\(C_M, G_M, H_M\)は以下の通り与えられます。
    \(\displaystyle
    \begin{eqnarray}
    C_M=\left\{~~
    \begin{aligned}
    &1.65+0.65\tanh(4M_a-3.4)~~~~~\mbox{for} ~~~M_a\lt 1.5\\
    &2.18-0.13\tanh(0.9M_a-2.7)~~~\mbox{for} ~~~M_a\gt 1.5
    \end{aligned}
    \right.
    \end{eqnarray}
    \)

  • \(\displaystyle
    \begin{eqnarray}
    G_M=\left\{~~
    \begin{aligned}
    &166M_a^3+3.29M_a^2-10.9M_a+20~~~\mbox{for} ~~~M_a\lt 0.8\\
    &5+40M_a^{-3}~~~\hspace{9.4em}\mbox{for} ~~~ M_a\gt 0.8
    \end{aligned}
    \right.
    \end{eqnarray}
    \)

    \(\displaystyle
    \begin{eqnarray}
    H_M=\left\{~~
    \begin{aligned}
    &0.0239M_a^3+0.212M_a^2-0.074M_a+1~~~\mbox{for} ~~~ M_a\lt 1\\
    &0.93+\frac{1}{3.5+M_a^5}~~~\hspace{8.8em}\mbox{for} ~~~ M_a\gt 1
    \end{aligned}
    \right.
    \end{eqnarray}
    \)

  • 定性的、広範囲
    \begin{align}
    C_d
    =\frac{24}{R_e}
    +\frac{2.6\left(\frac{R_e}{5.0}\right)}{1+\left(\frac{R_e}{5.0}\right)^{1.52}}
    + \frac{0.411\left(\frac{R_e}{263000}\right)^{-7.94}}{1+\left(\frac{R_e}{263000}\right)^{-8.00}}
    + \left(\frac{0.25\frac{R_e}{10^6}}{1+\frac{R_e}{10^6}}\right),~~~\mbox{式(3)}
    \end{align}

対象物が流体中を高速で動かなければ、層流領域で実験値を良く合う式(1)(図中の赤線), 式(2)で十分でしょう。
温度なども含めたいならば、PDFで説明しているレイノルズ数、マッハ数を置き換えて利用することを勧めます。
また精度はあまりいらない状況で、定性的な理解だけを対象とするならば、乱流領域の振る舞いを含む式(3)(図中の水色線)を用いると良いです。

以降、詳細は
https://slpr.sakura.ne.jp/qp/supplement_data/drag_coefficient_air/drag_coefficient.pdf
をご覧ください。

弾道計算(BB弾)の結果2、違う重さでの比較

本稿の主要な結果は、様々なパラメータでの、BB弾の軌道の詳細なデータです。

この結果に付随して、
0.25g0.8Jの軌道は
0.20g1.2Jの軌道と同じであることが分かりました。

上下振れ幅が最小になる軌道における、重さとエネルギー、ゼロイン位置を様々にとった時のそれぞれのデータです。
弾道計算を数値計算によって行い、結果を考察することが本稿の目的となります。
※本稿では規定のエネルギーを超える場合のデータがありますが、このデータは全て数値シミュレーションであるため、こういったエアガンを持っている訳ではありません。

弾道計算に関するその他ページ
弾道計算(BB弾)の理論
BB弾の回転量について(実験との比較)
弾道計算(BB弾)の結果
弾道計算の結果2, 比較と詳細データ←今ここ
弾道計算(BB弾)のコード(fortran90)
バレル内部でのBB弾の方程式
水中下でのBB弾の弾道計算


様々なパラメータの最適な軌道


ここで載せるデータは、以下の組み合わせです。

BB弾の重さ: 0.20g , 0.25g
エネルギー:0.60J 0.65J 0.70J 0.75J 0.80J 0.85J 0.90J
ゼロイン位置:25m 30m 35m 40m 45m 50m 55m 60m(0.25gのみ)
各々でどのような軌道を描くかの計算結果を載せます。
破線はホップ無しの軌道に対応しています。

↓これは低画質です。高画質版はこのリンク(4.3MB)を踏んでください。
弾道詳細データ_高画質2 - コピー_c


最適な軌道に合わせるためには下向きに初速を与えます。
その時、下向きに何度傾けて撃てばいいか、のデータはこちらです。

ゼロインと下向き角度


前提


まず、規定速度うんぬんは別にしまして、事実を述べます。

  1. BB弾は重いほど弾はまっすぐ飛ぶ
  2. 射出速度が早いほど弾はまっすぐ飛ぶ
  3. ホップを掛けるほど弾は上下に揺れる

これらは紛れもない事実です。
よって、BB弾を飛ばす最高の条件とは、
「射出速度を早くし、ホップは余りかけないで重いBB弾を使うこと」
となります。
だからこそ、射出速度を速めようとして規定速度の話になります。

最適な軌道とは?


BB弾を飛ばすうえで最適な軌道とはどんな軌道でしょう?
それはホップによる上下方向の揺れを最小限に抑える軌道です。
この最適な軌道とは、BB弾の重さとエネルギーとゼロイン位置を決めた時の理想的な軌道、ということです。

ゼロイン位置と上下の振れ幅とは何かは、下の画像をご覧ください。
0.25,0.8_compressed

重さとエネルギーを決めても、どの角度で射出すればいいか、回転数はいくつか、など他のパラメータが残ります。
それを決めるため、ホップによる上下方向の揺れを最小限に抑える軌道を定めます。

この軌道を ”最適な軌道” と呼ぶことにします。

重さの違いによる軌道の具体的な影響


今度は、ゼロイン位置を固定します。
そして、BB弾の重さとエネルギーを変化させたとき、どのような軌道をたどるか見てみましょう。
zeroin50_2_cc

この結果から分かることは2点あります。

1つ目は、エネルギーを上げていくと軌道の変化が小さくなる
2つ目は、重いBB弾の軌道ほどまっすぐ飛ぶ

ということです。

エネルギーを上げると軌道の変化が小さくなる

0.20gの場合でゼロインを50mに合わせ、エネルギーを0.1Jずつ増やしていったとき、上下振れ幅がどのくらい減少していくのか見てみましょう。

0.60J→0.70J … 14.2cm
0.70J→0.80J … 10.4cm
0.80J→0.90J … 8.0cm
0.90J→1.00J … 6.2cm
1.00J→1.10J … 5.0cm
1.10J→1.20J … 4.2cm
1.20J→1.30J … 3.6cm
1.30J→1.40J … 3.0cm

となります。エネルギーを変えるよりも重さを変えるべきです。
それだけで軌道は大きく変わります。

例えば、0.80Jで射出できるエアガンで、使うBB弾を0.25gで射出すると、この時、軌道は0.20g1.2Jの軌道にほぼ一致します。
m020J12m025J08_2_c

まぁ、軌道自体は一致するのですが、残念ながら到達時間は一致しません。
約0.1秒(まばたき程度)、0.20g1.2Jのほうが早くなります。
zeroin50_2_time_c

追記)
0.25gで0.90Jは、0.20gの1.35Jの軌道におおよそ相当します。
0.30gで0.80Jは、0.20gの1.60J, 0.25gの1.05Jの軌道におおよそ相当します。
0.30gで0.90Jは、0.20gの1.80J, 0.25gの1.20Jの軌道におおよそ相当します。

0.25gで0.8Jでうまく合わせられたら50m飛ばしても上下の振れ幅40cmです。
上に20cm、下に20cmしかずれません。
また、エネルギーを上げても空気抵抗の強さは速度の2乗に比例して強くなるため、それに見合うようなの飛距離の伸びは得られません。


補足


「流速チューン」というものがあるそうですね。
流速チューンの問題点と改善案について -週休5日

流速チューン比較テスト その1「初速変化」 -Gunsmithバトン
にあるように。

本稿ではこれらのことについては全く触れていません。
というのも、銃口から射出された直後の初速と回転数の2つだけが軌道に影響するためであり、発射するまでの過程に何があったか?などどうでもいいのです。
数値計算の観点から言いますと、通常の軌道よりも「まっすぐ遠くまで飛ぶ」場合、初速が上がっていること以外には考えられません
BB弾を飛んでいる最中で加速させる要因など無いのです。


※1
なぜBB弾を使う限り初速を稼ぐことが無駄なのか?
これは空気抵抗が関係します。
空気抵抗の大きさは弾道計算(BB弾)の理論で書いたように、BB弾の半径\(R\)と速度\(v\)にのみ依存します。
空気抵抗力を半径\(R\)と速度\(v\)の関数として\(F_d(R,v)\)、質量\(m\)とすると、その運動方程式は
\(
m\frac{d^2\vec{r}}{dt^2}=F_d(R,v)
\)
であり、両辺をmで割れば
\(
\frac{d^2\vec{r}}{dt^2}=F_d(R,v)/m
\)
となります。BB弾の半径や、温度、空気は変えられないので、可変なパラメータは質量と速度のみです。
そして右辺だけに注目すれば、質量が大きいほど空気抵抗力があたかも小さくなるのです。
すなわち、空気抵抗力を減らそうとするにはBB弾の重さを変えるほかない。
また、初速を変えても空気抵抗は速度の2乗で効いてくるため、皮肉なことに速度が早いほど空気抵抗力が強くなっていくのです。
よって、高いエネルギーでは初速を上げてもそれに見合っただけの結果は得ることはできないのです。

Schrödinger, Heisenberg, Interaction描像

Schrödinger描像、Heisenberg描像、Interaction描像というものがあります。

Schrödinger描像は波動関数による表現方法で、多くの場合で分かりやすい表現なため良く取り入れられます。
ただし、時と場合によってHeisenberg描像の方が分かりやすかったり、Interaction描像の方が最適、というときがあります。

表現方法が違うだけで同じものを表現します。

  1. Schrödinger描像(S描像)

    \(\hat{H}\)が時間依存しない場合、時刻\(t\)での波動関数は初期状態(\(t=0\))の波動関数\(\Psi_S(0)\)を用いて、
    \(
    \displaystyle \Psi_S(t)=e^{-i\frac{\hat{H}}{\hbar}t}{\Psi_s(0)}\ \ \ \ (1)
    \)

    と書くことができます。ここで添え字”\(S\)“はS描像であることを強調しています。
    \(\displaystyle \hat{U}(t)=e^{-i\frac{\hat{H}}{\hbar}t}\ \ \ (2)\)
    と表記されることが多く、時間発展演算子と呼ばれています。
    今、(2)の両辺を時間微分すると、\(\hat{U}(t)\)の満たす微分方程式
    \(
    \displaystyle i\hbar \frac{d\hat{U}(t)}{dt}=\hat{H}\hat{U}(t), \ \ \ \hat{U}(0)=1\ \ \ (3)
    \)

    が得られます。また、式(3)は実は\(\hat{H}\)が時間依存していても成立します。
    この意味は、式(3)が時間発展演算子のより一般的な記述方法であることを意味しています。

    今、Schrödinger描像で、とある演算子\(\hat{A}\)の期待値を考えます
    (\(\hat{A}_S\)は時間依存してもしなくてもok)。
    (例えば\(\hat{A}_S\)は位置空間で、位置演算子だったら\(\hat{x}=x\)、運動量演算子だったら\(\hat{p}=-i\hbar\frac{d}{dx}\)です。)
    すると、その期待値を表す関数は時間依存し、時刻\(t\)の\(\hat{A}\)の期待値\(\langle\hat{A}\rangle_t\)は
    \(
    \begin{align}
    \langle\hat{A}\rangle_t
    &\displaystyle =\langle{\Psi_S}(t)|\hat{A}_S|\Psi_S(t)\rangle \\
    &\displaystyle =\langle e^{-i\frac{\hat{H}}{\hbar}t} \Psi_S(0)|\hat{A}_S|e^{-i\frac{\hat{H}}{\hbar}t}\Psi_s(0)\rangle
    \end{align}
    \)
    と書けます。これがSchrödinger描像における演算子の期待値を表現しています。

  2. Heisenberg描像(H描像)

    時刻\(t\)でのHeisenberg描像の波動関数\(\Psi_H(t)\)の定義は
    \(
    \begin{align}
    \Psi_H(t)&=e^{i\frac{\hat{H}}{\hbar}t}\Psi_S(t) \\
    &=e^{i\frac{\hat{H}}{\hbar}t}e^{-i\frac{\hat{H}}{\hbar}t}\Psi_S(0) \\
    &=\Psi_S(0)
    \end{align}
    \)
    です。
    Heisenberg描像で、\(\hat{A}\)の期待値\(\langle\hat{A}\rangle_t\)を考えましょう。
    \(
    \begin{align}
    \langle\hat{A}\rangle_t&=\langle\Psi_S(t)|\hat{A}_S|\Psi_S(t)\rangle \\
    &\displaystyle =\langle\Psi_S(t)|e^{-i\frac{\hat{H}}{\hbar}t}e^{i\frac{\hat{H}}{\hbar}t}\hat{A}_S e^{-i\frac{\hat{H}}{\hbar}t}e^{i\frac{\hat{H}}{\hbar}t}|\Psi_S(t)\rangle \\
    &\displaystyle =\langle\Psi_H(0)|\hat{A}_H(t)|\Psi_H(0)\rangle
    \end{align}
    \)
    すなわち、S描像の演算子\(\hat{A}_S\)との間には、
    \(
    \hat{A}_H(t)=e^{i\frac{\hat{H}}{\hbar}t}\hat{A}_S e^{-i\frac{\hat{H}}{\hbar}t}
    \)

    という関係があるのです。

    では、H描像で演算子\(\hat{A}_H(t)\)の時間依存性はどうなるのでしょう。
    上の式を両辺微分して\(i\hbar\)を掛けると、
    \(
    \begin{align}
    i\hbar\frac{d}{dt}\hat{A}_H(t)&=
    -\hat{H}e^{i\frac{\hat{H}}{\hbar}t}\hat{A}_S e^{-i\frac{\hat{H}}{\hbar}t}
    +e^{i\frac{\hat{H}}{\hbar}t}\hat{A}_S e^{-i\frac{\hat{H}}{\hbar}t}\hat{H} \\
    &=-\hat{H}\hat{A}_H(t)+\hat{A}_H(t)\hat{H} \\
    i\hbar\frac{d}{dt}\hat{A}_H(t)&=\left[\hat{A}_H(t), \hat{H}\right]
    \end{align}
    \)

    もしも、\(\hat{A}_S\)が時間依存する形だったら
    \(
    \displaystyle i\hbar\frac{d}{dt}\hat{A}_H(t)=\left[\hat{A}_H(t), \hat{H}\right]+i\hbar \frac{\partial \hat{A}_H(t)}{\partial t}
    \)
    と書けます。

  3. Interaction描像(I描像)

    前提がありまして、系のハミルトニアン\(\hat{H}\)を\(\hat{H}=\hat{H}_0+\hat{V}\)と分けます。
    そして、\(\hat{H}_0\)の時間発展は分かっているものとします。

    この時、時刻\(t\)でのInteraction描像の波動関数\(\Psi_I(t)\)の定義は
    \(
    \begin{align}
    \Psi_I(t) &= e^{i\frac{\hat{H_0}}{\hbar}t}\Psi_S(t) \\
    &(= e^{i\frac{\hat{H_0}}{\hbar}t}e^{-i\frac{\hat{H}}{\hbar}t}\Psi_S(0) )
    \end{align}
    \)
    です。
    このInteraction描像の波動関数の意味を簡単に説明すると、
    \(\Psi_I(t)\)は、ある時刻で、S描像の波動関数を\(e^{-i\frac{\hat{H}}{\hbar}t}\)に従って時間を進める方向に時間発展させる部分と、\(e^{i\frac{\hat{H}_0}{\hbar}t}\)に従って時間を戻す方向に時間発展させる部分の2つがある、ということです。
    詳しくは後ほど述べます。

    I描像での演算子\(\hat{A}\)の期待値\(\langle\hat{A}\rangle_t\)はどうなるのでしょう。
    \(
    \begin{align}
    \langle\hat{A}\rangle_t&=\langle\Psi_S(t)|\hat{A}_S|\Psi_S(t)\rangle \\
    &\displaystyle =\langle\Psi_S(t)|e^{-i\frac{\hat{H}_0}{\hbar}t}e^{i\frac{\hat{H}_0}{\hbar}t}\hat{A}_S e^{-i\frac{\hat{H}_0}{\hbar}t}e^{i\frac{\hat{H}_0}{\hbar}t}|\Psi_S(t)\rangle \\
    &\displaystyle =\langle\Psi_I(t)|\hat{A}_I(t)|\Psi_I(t)\rangle
    \end{align}
    \)
    と書けます。

    すなわち、I描像では演算子が時間依存し、波動関数も時間依存します。
    よって、
    Interaction描像での演算子\(\hat{A}_I(t)\)の時間依存を記述する方程式と、
    Interaction描像での波動関数\(\Psi_I(t)\)の時間依存を記述する方程式
    があり、それらを求めてみましょう。

    • 演算子\(\hat{A}_I(t)\)の時間依存

      \(
      \hat{A}_I(t)=e^{i\frac{\hat{H}_0}{\hbar}t}\hat{A}_S e^{-i\frac{\hat{H}_0}{\hbar}t}
      \)
      演算子の期待値は上式の通りであり、もしも\(\hat{H}_0\)が時間依存しない場合、Heisenberg描像で\(\hat{H}\to \hat{H}_0\)と置き換えたものと同じ形になります。すなわち、
      \(
      \displaystyle i\hbar\frac{d}{dt}\hat{A}_I(t)=\left[\hat{A}_I(t), \hat{H}_0\right]
      \)
      となります。もしも\(\hat{H}_0\)が時間依存する場合は、
      \(
      \displaystyle i\hbar\frac{d}{dt}\hat{A}_I(t)=\left[\hat{A}_I(t), \hat{H}_0\right]+i\hbar \frac{\partial \hat{A}_I(t)}{\partial t}
      \)

    では、I描像で波動関数\(\Psi_I(t)\)が満たす運動方程式はどうなるでしょう。
    I描像の波動関数の定義式に左から\(e^{-i\frac{\hat{H_0}}{\hbar}t}\)を掛けると、
    \(
    \Psi_S(t) = e^{-i\frac{\hat{H_0}}{\hbar}t}\Psi_I(t)
    \)
    であり、これをS描像のSchrödinger方程式に代入します。
    \(
    \begin{align}
    & i\hbar \frac{\partial}{\partial t}\left(e^{-i\frac{\hat{H}_0}{\hbar}t}\Psi_I(t)\right)
    =\hat{H}e^{-i\frac{\hat{H}_0}{\hbar}t}\Psi_I(t) \\
    & i\hbar \left[-\frac{i}{\hbar}\hat{H}_0 e^{-i\frac{\hat{H}_0}{\hbar}t}\Psi_I(t)+e^{-i\frac{\hat{H}_0}{\hbar}t}\frac{\partial \Psi_I(t)}{\partial t}\right]
    =\hat{H}_0e^{-i\frac{\hat{H}_0}{\hbar}t}\Psi_I(t)+\hat{V}e^{-i\frac{\hat{H}_0}{\hbar}t}\Psi_I(t) \\
    & i\hbar e^{-i\frac{\hat{H}_0}{\hbar}t}\frac{\partial \Psi_I(t)}{\partial t}=\hat{V}e^{-i\frac{\hat{H}_0}{\hbar}t}\Psi_I(t) \\
    \end{align}
    \)
    左から\(e^{i\frac{\hat{H}_0}{\hbar}t}\)を作用させると、
    \(
    \displaystyle i\hbar \frac{\partial \Psi_I(t)}{\partial t}=e^{i\frac{\hat{H}_0}{\hbar}t}\hat{V}e^{-i\frac{\hat{H}_0}{\hbar}t}\Psi_I(t)
    \)
    ここで、Interaction描像の演算子\(\hat{H}_I(t)\)を
    \(
    \displaystyle \hat{H}_I(t)=e^{i\frac{\hat{H}_0}{\hbar}t}\hat{V}e^{-i\frac{\hat{H}_0}{\hbar}t}
    \)
    と置くと、波動関数\(\Psi_I(t)\)が満たす運動方程式
    \(
    \displaystyle i\hbar \frac{\partial \Psi_I(t)}{\partial t}=\hat{H}_I(t)\Psi_I(t)
    \)
    が得られます。

さて、定義が終わったところで、Heisenberg描像とInteraction描像の意味を見てみましょう。
簡単にそれぞれの描像を説明すると、

Heisenberg描像量子-古典対応を成す
Interaction描像既に分かっている部分を取り除く

という特徴があります。

まずはHeisenberg描像から。
Heisenberg描像でHeisenberg描像の演算子\(\hat{A}_H(t)\)の時間発展を記述する運動方程式は
\(
i\hbar\frac{d}{dt}\hat{A}_H(t)=\left[\hat{A}_H(t), \hat{H}\right] \cdots(A)
\)
です。
今、\(\hat{A}_H(t)\)が位置演算子\(\hat{q}\)と運動量演算子\(\hat{p}\)によって表記されていると考えます。
この時、Schrödinger描像で、それぞれの演算子はハミルトニアンと
\(
\begin{align}
\left[\hat{q}_S,\hat{H}_S\right] &= i\hbar \frac{\hat{p}_S}{m} \\
\left[\hat{p}_S,\hat{H}_S\right] &= -i\hbar \frac{\partial}{\partial \hat{q}_S}\hat{H}_S
\end{align}
\)
という関係があります。
Heisenberg描像でSchrödinger描像のハミルトニアンがどう記述されるのかを考えてみると、
\(
\begin{align}
\hat{H}_S &= \frac{\hat{p}_S^2}{2m}+\hat{V}_S \\
&= \frac{1}{2m}e^{-i\frac{\hat{H}_S}{\hbar}t}\hat{p}_H^2 e^{i\frac{\hat{H}_S}{\hbar}t}+e^{-i\frac{\hat{H}_S}{\hbar}t}\hat{V}_H^2 e^{i\frac{\hat{H}_S}{\hbar}t} \\
&= e^{-i\frac{\hat{H}_S}{\hbar}t}\left( \frac{\hat{p}_H^2}{2m}+\hat{V}_H\right) e^{i\frac{\hat{H}_S}{\hbar}t} \\
\hat{H}_H&= e^{i\frac{\hat{H}_S}{\hbar}t}\hat{H}_S e^{-i\frac{\hat{H}_S}{\hbar}t} \\
&=\hat{H}_S
\end{align}
\)
となり、結局
\(
\hat{H}_S=\hat{H}_H
\)

であることが導かれます。
Heisenberg描像での位置演算子\(\hat{q}\)と運動量演算子\(\hat{p}\)の交換関係は
\(
\begin{align}
\left[\hat{q}_H,\hat{H}_H\right] &= i\hbar \frac{\hat{p}_H}{m} \\
\left[\hat{p}_H,\hat{H}_H\right] &= -i\hbar \frac{\partial}{\partial \hat{q}_H}\hat{H}_H \\
\end{align}
\)
であることが導けるため、\(\hat{q}_H\)と\(\hat{p}_H\)に関して、運動方程式に代入して
\(
\begin{align}
i\hbar\frac{d}{dt}\hat{p}_H(t)&=\left[\hat{p}_H(t), \hat{H}_H\right] \\
&= -i\hbar \frac{\partial}{\partial \hat{q}_H}\hat{H}_H \\
\frac{d}{dt}\hat{p}_H(t)&=-\frac{\partial}{\partial \hat{q}_H}\hat{H}_H
\end{align}
\)
であり、
\(
\begin{align}
i\hbar\frac{d}{dt}\hat{q}_H(t)&=\left[\hat{q}_H(t), \hat{H}_H\right] \\
&= i\hbar \frac{\hat{p}_H}{m} \\
\frac{d}{dt}\hat{q}_H(t)&=\frac{\partial}{\partial \hat{p}_H}\hat{H}_H
\end{align}
\)
となります。
この二つの式は、古典力学のハミルトンの運動方程式に酷似していますよね。ここからHeisenberg描像が量子-古典対応を成す、という所以になるわけです。

注意として、Heisenberg描像は、量子-古典対応を成しますが、演算子それ自身を測定することなどできないのです。あくまで期待値と対応するだけです。
また、Heisenberg描像は古典力学への回帰を見出し、エーレンファストの定理と関連します。


続いて相互作用描像です。
系のハミルトニアン\(\hat{H}\)を\(\hat{H}=\hat{H}_0+\hat{V}\)と分けます。
そして、\(\hat{H}_0\)の時間発展は分かっている時、Interaction描像の波動関数\(\Psi_I(t)\)は
\(
\begin{align}
\Psi_I(t) = e^{i\frac{\hat{H_0}}{\hbar}t}e^{-i\frac{\hat{H}}{\hbar}t}\Psi_S(0)
\end{align}
\)
でした。じっくり見ていきましょう。
例を考えます。
\(
\displaystyle \hat{H}=\hat{H}_0+V(x)=-\frac{\hbar^2}{2m}\nabla^2+V(x)
\)
で、ポテンシャル\(V(x)\)が単調減少で図のような山なりの波形をしている場合を考えます。
Interaction描像イラスト_c
初期状態\(\Psi_S(0)\)があったとすると時間経過すると、その波動関数の形は広がりながら右へ移動します。
Interaction描像では、この、広がる、という動きと、右へ移動する、という動きが合わさったと考えます。
広がる動きは、ポテンシャルが無いときの波束の動きです。ポテンシャルがない時、右に動くことはしません。
右への動きは、ポテンシャルしか無いときの波束の動きです。質点を考えれば、ポテンシャルの山を転がり、右へ動きます。

Interaction描像の波動関数\(\Psi_I(t)\)は既に分かっている広がる動き(\(\hat{H}_0=-\frac{\hbar^2}{2m}\nabla^2\)の部分)を取り除き、波束が右に動く描像(\(V(x)\)の部分)だけを切り抜くのです。

言葉で言えば、Interaction描像は、
\(t’\)秒後の\(I\)描像における波動関数は、\(t’\)秒後の\(S\)描像における波動関数に対して、\(t’\)秒間の\(\hat{H}_0\)による逆方向の時間発展を行えばよい、ということです。

あくまでもイメージなので、細かな議論はご了承を。

参考文献

David J. Tannor著、山下晃一ほか訳『入門 量子ダイナミクス(上)』(2011), p.231~236

演算子の種類と説明

\(\hat{A}\)がエルミート演算子ならば、\(e^{i\hat{A}}\)はユニタリー演算子である。

この文の意味が分かる人はこのページはいらないと思います。


前提として、一度勉強した人が思い出す、という体を想定しています。
詳しくブラケット表記であるとか、正しく知りたい人は、
J. J. Sakurai著 桜井 明夫訳『現代の量子力学〈上〉』 (物理学叢書) (1989)



David J.Tannor著 山下晃一訳 『入門 量子ダイナミクス 時間依存の量子力学を中心に(上)』 化学同人
などを参考にしてください。このページの参考先もこの2つです。

[adsense1]

エルミート演算子(Hermite Operator)


エルミート演算子は自己随伴演算子とも呼ばれます。

  • ディラックのブラ・ケット表記で考えます。
    演算子\(\hat{A}\)の状態\(u\)と状態vによる内積を\(\langle u|\hat{A}|v\rangle \)と、表現します。
    関数による表現では、
    \(
    \displaystyle \langle u|\hat{A}|v\rangle =\int u^* \hat{A} v dx
    \)

    となるわけです。この時、
    \(
    \langle u|\hat{A}|v\rangle^*=\langle v|\hat{A}^{\dagger}|u\rangle
    \)

    を関係を満たす演算子を随伴演算子と呼び、\(\hat{A}^{\dagger}\)と表現します(\(\hat{A}\)のエルミート共役を取る、とも言います)。

    状態による表記では、
    \(
    \displaystyle \hat{A}|v\rangle =\lambda |v\rangle
    \)

    に対してエルミート共役を取ると、
    \(
    \displaystyle \langle v|\hat{A}^{\dagger} =\lambda^* \langle v|
    \)

    と書けます。

    そして、たまたま\(\hat{A}^{\dagger}\)が\(\hat{A}\)に等しい場合、すなわち、
    \(
    \hat{A}^{\dagger}=\hat{A}
    \)

    を満たすとき、演算子\(\hat{A}\)はエルミート演算子(自己随伴演算子)だ、と呼びます。

  • エルミート演算子の持つ性質
    1. エルミート演算子の固有値は実数である。
      \(
      \hat{A}|v\rangle=\lambda |v\rangle
      \)

      左から\(v\)を掛けて、内積を取り、式変形します。式変形は2通り考えられて、

      \(
      \begin{eqnarray}
      \left\{
      \begin{aligned}
      \langle v|\hat{A}|v\rangle&=\langle v|\lambda |v\rangle=\lambda\langle v|v\rangle \\
      \langle v|\hat{A}|v\rangle&=\langle v|\hat{A}^{\dagger}|v\rangle=
      \langle v|\lambda^*|v\rangle=\lambda^*\langle v|v\rangle
      \end{aligned}
      \right .
      \end{eqnarray}
      \)

      となります。同じものから出発したので値は同じものになるはずです。なので
      \(\lambda=\lambda^*\)
      これを満たす\(\lambda\)は虚数部がゼロでなければなりません。
      よってエルミート演算子の固有値は実数である、となります。

    2. あるエルミート演算子が異なる2つの固有値を持つ場合、これらの固有値に対応する固有関数は互いに直交する。
      2つの固有値を\(\lambda_1, \lambda_2\)と書いて、
      それぞれの固有値に属する固有ベクトルを\(|v_1\rangle, |v_2\rangle\)と書くことにします。すなわち、
      \(
      \hat{A}|v_1\rangle=\lambda_1 |v_1\rangle \ ,\ \ \ \ \hat{A}|v_2\rangle=\lambda_2 |v_2\rangle
      \)

      であるとします。ここで\(\lambda_1\neq \lambda_2\)です。
      1番目の式に左から左から\(\langle v_2|\)を作用させて式変形します。式変形は2通り考えられて、
      \(
      \begin{eqnarray}
      \left\{
      \begin{aligned}
      \langle v_2|\hat{A} |v_1\rangle&=\langle v_2|\lambda|v_1\rangle=\lambda_1\langle v_2|v_1\rangle \\
      \langle v_2|\hat{A}|v_1\rangle&=\langle v_2|\hat{A}^{\dagger}|v_1\rangle=
      \lambda_2^*\langle v_2|v_1\rangle=\lambda_2\langle v_2|v_1\rangle
      \end{aligned}
      \right .
      \end{eqnarray}
      \)

      同じものから出発したので、
      \(
      \begin{align}
      \lambda_1\langle v_2|v_1\rangle=\lambda_2\langle v_2|v_1\rangle \\
      \rightarrow (\lambda_1-\lambda_2)\langle v_2|v_1\rangle=0
      \end{align}
      \)

      仮定より、\(\lambda_1\neq \lambda_2\)なので、\(\langle v_2|v_1\rangle=0\)になるほかありません。
      \(\langle v_2|v_1\rangle=0\)は内積がゼロ、すなわち直交である、と言っているので仮定は示されました。
  • ある状態\(\phi\)が、演算子\(A\)の固有値\(\lambda_i\)に属する固有状態\({v_i}\)の組で書かれるとき、
    すなわち、
    \(
    \displaystyle |\phi\rangle=\sum_ia_i|v_i\rangle
    \)

    で書かれるとき、
    \(
    \displaystyle \frac{\langle\phi|\hat{A}|\phi\rangle}{\langle\phi|\phi\rangle}
    =\sum_i p_i \lambda_i,\ \ \ p_i\equiv \frac{|a_i|^2}{\sum_i|a_i|^2}\ \ \cdots (a)
    \)

  • 量子力学の中心的教義は以下の3つを主張しています。
      (i)     全ての観測量にはエルミート演算子\(\hat{A}\)が結び付けられる。
      (ii)   \(\hat{A}\)に属する観測量の測定について、起こりうる結果は\(A\)の固有値\(\{A_i\}\)のみ。
      (iii)  系が状態\(|\phi\rangle=\sum_ia_i|v_i\rangle\)にあれば、
      \(\lambda_i\)の値を得る確率は\((a)\)で与えた\(p_i\)で与えられる。
      また、\(\displaystyle \sum_ip_i\lambda_i\)は\(\hat{A}\)を測定した平均値、もしくは期待値である。
  • おまけ
    随伴行列\(A^{\dagger}\)は、\(\hat{A}\)の転置行列の複素共役で与えられます。
    \(
    (A_{ij})^{\dagger}=A^*_{ji}
    \)

    特に、エルミート行列の場合、\(A^{\dagger}=A^*\)なので、
    \(
    A_{ij}=A^*_{ji}
    \)

    対角要素については\(A_{ii}=A^*_{ii}\)が成り立つので、エルミート行列の対角要素は実数でなければならないことがわかります。

逆演算子


\(\hat{A}\)の逆\(\hat{A}^{-1}\)を意味します。

  • 定義

    \(\hat{A}|u\rangle=|v\rangle\ \ \ \cdots (1)\)
    のとき、逆演算子\(\hat{A}^{-1}\)は
    \(|u\rangle=\hat{A}^{-1}|v\rangle\ \ \ \cdots (2)\)
    と定義されます。

  • 性質

    (1)の左から\(\hat{A}^{-1}\)を作用させると、
    \(\hat{A}^{-1}\hat{A}|u\rangle=\hat{A}^{-1}|v\rangle\ \ \ \cdots (1-1)\)
    (2)の左から\(\hat{A}\)を作用させると、
    \(\hat{A}\hat{A}^{-1}|u\rangle=\hat{A}|v\rangle\ \ \ \cdots (2-1)\)

    (1)と(2-1), (2)と(1-1)を見比べれば、明らかに
    \(\hat{A}\hat{A}^{-1}=\hat{A}^{-1}\hat{A}=\mathbf{1}\)
    となります。

  • 逆演算子の存在
    全ての演算子に逆演算子があるわけではありません。以下の通り、逆が存在しない場合があることを示せます。
    演算子\(\hat{A}\)が2つの異なる初期ベクトルを同じ終ベクトルに写す状況を考えます。式で表せば、
    \(
    \begin{eqnarray}
    \left\{
    \begin{aligned}
    \hat{A}|u_1\rangle&=|v\rangle \ \ \ (3)\\
    \hat{A}|u_2\rangle&=|v\rangle \ \ \ (4)
    \end{aligned}
    \right.
    \end{eqnarray}
    \)
    ここで、
    \(\hat{A}^{-1}|v\rangle\)を考えた時、それを\(|u_1\rangle\)か、\(|u_2\rangle\)かを決める術はありません。
    よって逆が存在しないことになります。
    また、 \((4)-(3)\)を行うと、
    \(
    (4)-(3)=\hat{A}(|u_1\rangle-|u_2\rangle)=\mathbf{0}
    \)
    となります。この意味は、\(\hat{A}\)は\(\mathbf{0}\)ではない、いくつかのベクトルを消去する、ということを表現しています。

[adsense2]

ユニタリー演算子


ユニタリー演算子は演算子\(\hat{A}\)の逆演算子\(\hat{A}^{-1}\)が
\(\hat{A}\)のエルミート共役\(\hat{A}^{\dagger}\)に等しいとき、その演算子はユニタリー演算子だ
、と定義されます。すなわち、
\(
\hat{A}^{-1}=\hat{A}^{\dagger}
\)
を満たすとき、と定義されます。
また、別の表現では
\(
\hat{A}^{\dagger}\hat{A}=\hat{A}\hat{A}^{\dagger}=\mathbf{1}
\)
という場合もありますが同じことです。
ユニタリー演算子はよく、\(\hat{U}\)という表記がされます。

  • ユニタリー演算子の性質
    1. ユニタリー演算子はノルムを保存する。
      ユニタリー演算子が状態\(|u\rangle\)に作用した場合を考えます。この時、ノルムは自身の内積を取ればいいので、
      \(\langle u|\hat{A}^{\dagger}\)と\(\hat{A}|u\rangle\)を作用させればノルムになります。故に、
      \(
      \langle u|\hat{A}^{\dagger}\hat{A}|u\rangle=\langle u|u\rangle
      \)
      であり、ノルムは変わりません。
    2. ユニタリー演算子の固有値は絶対値\(\mathbf{1}\)を必ず含む。
      あるユニタリー演算子を\(\hat{U}\)と書き、固有値問題を
      \(
      \hat{U}|v\rangle=\lambda |v\rangle\ \ \ (5)
      \)
      と書きます。

      両辺のエルミート共役をとって、
      \(
      \displaystyle \langle v|\hat{U}^{\dagger} =\lambda^* \langle v|
      \)

      ユニタリー演算子の性質を使うと、
      \(
      \displaystyle \langle v|\hat{U}^{-1} =\lambda^* \langle v|
      \)

      右から\(\hat{U}\)を作用させて、
      \(
      \begin{align}
      \displaystyle \langle v|\hat{U}^{-1}\hat{U} &=\lambda^* \langle v|\hat{U} \\
      \displaystyle \langle v|\hat{U} &=\frac{1}{\lambda^*}\langle v| \ \ \ \ (6)
      \end{align}
      \)

      (5)に左から\(\langle v|\)を作用させると、
      \(
      \langle v|\hat{U}|v\rangle=\langle v|\lambda |v\rangle=\lambda\langle v |v\rangle\ \ \ (7)
      \)

      であり、また、内積を以下のように変形し、(6)を使うと、
      \(
      \displaystyle \langle v|\hat{U}|v\rangle=\frac{1}{\lambda^*}\langle v|v\rangle\ \ \ (8)
      \)

      従って、式(7),(8)は同じものから出発したので等しいはずで、
      \(
      \begin{align}
      \lambda\langle v |v\rangle&=\frac{1}{\lambda^*}\langle v|v\rangle \\
      &\rightarrow |\lambda|^2=1
      &\rightarrow |\lambda|=1
      \end{align}
      \)
      となるため、ユニタリー演算子の固有値は必ず絶対値1を含みます
      ※これは、\(e^{i\theta},\ \ \ \theta\)は実数、であればいいと言っています。1である必要性はありません。

    3. 異なる固有値を持つユニタリー演算子の固有状態は直交する
      異なる2つの固有値を\(\lambda_1, \lambda_2\)と書き、
      それぞれの固有値に属する固有ベクトルを\(|v_1\rangle, |v_2\rangle\)と書くことにします。
      \(|v_2\rangle\)と\(|v_1\rangle\)による内積をそれぞれ考えると、
      \(
      \langle v_2|\hat{U}|v_1\rangle=\langle v_2|\lambda |v_1\rangle=\lambda_1\langle v_2 |v_1\rangle\ \ \ (9)
      \)

      と変形できるし、
      \(
      \langle v_2|\hat{U}|v_1\rangle=\frac{1}{\lambda_2^*}\langle v_2|v_1\rangle=\lambda_2\langle v_2|v_1\rangle \ \ \ (10)
      \)

      とも変形できます。最後の変形は2.の性質、絶対値1を持つことを利用しています。
      2つの固有値\(\lambda_1, \lambda_2\)は違う値を仮定したので、(9)=(10)が成り立つためには
      \(\langle v_2|v_1\rangle=0\)
      でなければなりません。よって、ユニタリー演算子の異なる固有値に属する固有状態は直交していなければなりません。

ユニタリー演算子とエルミート演算子


エルミート演算子からユニタリー演算子を作る方法を示します。
この方法は運動量演算子の導出でも用いるので、覚えておいて損はないかと思います。

\(\hat{A}\)がエルミート演算子ならば、\(e^{i\hat{A}}\)はユニタリー演算子である。
演算子\(e^{i\hat{A}}\)の逆行列を考えて、それがエルミート共役に等しくなるか、見てみます。
定数に対するエルミート共役は単なる複素共役、\(\hat{U}=\hat{U}^{\dagger}\)であることを利用すると、
\(
\begin{align}
\left(e^{i\hat{A}}\right)^{-1}&=e^{-i\hat{A}} \\
&=1+(-i\hat{A})+\frac{(-i\hat{A})^2}{2!}+\cdots \\
&=1+(i\hat{A})^{\dagger}+\frac{\left\{(i\hat{A})^{\dagger}\right\}^2}{2!}+\cdots \\
&=\left(e^{i\hat{A}}\right)^{\dagger}
\end{align}
\)
となり、ユニタリー演算子の定義\(\hat{U}^{-1}=\hat{U}^{\dagger}\)を満たしていることがわかります。

逆行列とユニタリー行列


行列表記と演算子表記は同じものです。
量子力学では、ユニタリー行列の逆行列に関心があります。数式ならば、
\(\hat{U}^{-1}_{ij}=\hat{U}^{\dagger}_{ij}=\hat{U}^{*}_{ji}\)
ということです。

ユニタリー行列の性質の一つに、ユニタリー行列の列ベクトルは正規直交ベクトルである、ことを示しましょう。
逆行列との積は\(\mathbf{1}\)に等しいので
\(
(\hat{U}^{-1}\hat{U})_{ik}=\delta_{ik}
\)
です。これを踏まえ、ユニタリー演算子の性質を使って、
\(
\begin{align}
(\hat{U}^{\dagger}\hat{U})_{ik}&=\sum_j\hat{U}_{ij}^{\dagger}\hat{U}_{jk} \\
&=\sum_j\hat{U}_{ji}^{*}\hat{U}_{jk}=\delta_{ik}
\end{align}
\)
という結果が得られます。最後の式から、行列\(U\)の2つの列ベクトルの内積、これが\(\delta_{ik}\)に等しいことがわかります。
故にユニタリー行列の列ベクトルは正規直交ベクトルであることが示されました。

ちなみに、逆行列を得るための一般的な手続きは、
①  行列を対角形に変形

②  対角要素を逆数に

③  逆変換
という流れで行われます。

時間発展演算子の導出

量子力学における時間発展演算子\(\displaystyle \hat{U}_{(t)}=e^{-i\frac{\hat{H}}{\hbar}t}\)の導出です。
これは、ハミルトニアンは時間依存しない場合に限ります。時間依存するときは時間順序積という概念が出てきます。


シュレディンガー方程式
\(
\begin{align}
i\hbar\frac{\partial}{\partial t}\psi_{(x,t)}=\hat{H}\psi_{(x,t)}
\end{align}
\)
は既知のものとして進めます。

形式的な導出でよく説明されるのは以下の手順です。

シュレディンガー方程式の両辺を\(i\hbar\)で割って、更に波動関数\(\psi_{(x,t)}\)で割り両辺を時刻\(0\sim t\)まで積分します。
すなわち、
\(
\begin{align}
\int_{\psi_{(0)}}^{\psi_{(t)}}\frac{d\psi}{\psi}&=\int_0^t\frac{\hat{H}}{i\hbar}dt^{\prime} \\
\ln\frac{\psi_{(t)}}{\psi_{(0)}}&=\frac{-i}{\hbar}\hat{H}t \\
\end{align}
\)

なので
\(
\displaystyle \psi_{(x,t)}=e^{-i\frac{\hat{H}}{\hbar}t}\psi_{(x,0)}
\)

証明終了,,

(;’;゚;ж;゚;`;)ブホォッ
(; ^ω^)は…

何で波動関数で割ってくれちゃってるんですか?ハミルトニアンは演算子ですよ。形式的にしてもひどくない?

ということで、ちゃんと求めましょう。結果は↑のものと同じになります。不思議ですね。


ハミルトニアンが時間依存しないという条件の下求めます。
まず、時間依存するシュレディンガー方程式より、
\(
\displaystyle i\hbar\frac{\partial}{\partial t}\psi_{(x,t)}=\hat{H}\psi_{(x,t)}
\)

となります。無限小時間\(\Delta t\)に対して、シュレディンガー方程式は、
\(
\displaystyle i\hbar\lim_{\Delta t\rightarrow 0}\frac{\psi_{(x,t+\Delta t)}-\psi_{(x,t)}}{\Delta t}=\hat{H}\psi_{(x,t)}
\)

です。以降\(\lim\)は省略します。

式を変形して、
\(
\displaystyle \psi_{(x,t+\Delta t)}=\left(1-i\frac{\hat{H}}{\hbar}\Delta t\right)\psi_{(x,t)}
\)

また、もう\(\Delta t\)だけ時間を進めると、
\(
\displaystyle \psi_{(x,t+2\Delta t)}=\left(1-i\frac{\hat{H}}{\hbar}\Delta t\right)^2\psi_{(x,t)}
\)

という結果が得られます。

ここで、\(\Delta t\)をN回作用させることを考えます。
すなわち、\(t^{\prime}=N\Delta t\)とおき、\(\Delta t=\frac{t^{\prime}}{N}\)として考えれば、任意の時間\(t^{\prime}\)に対して、
\(
\displaystyle \psi_{(x,t+t^{\prime})}=\left(1-i\frac{\hat{H}}{\hbar}t^{\prime}\frac{1}{N}\right)^N\psi_{(x,t)}
\)

という式が成立します。

無限回、微小区間\(\Delta t\)を動かす操作を考えればいいので、\(N\rightarrow \infty\)として考えれば、
\(
\displaystyle \psi_{(x,t+t^{\prime})}=\lim_{N\rightarrow \infty}\left(1-i\frac{\hat{H}}{\hbar}t^{\prime}\frac{1}{N}\right)^N\psi_{(x,t)}
\)

公式
\(
\displaystyle \lim_{x\rightarrow \pm\infty}\left(1+\frac{a}{x}\right)^x=e^a
\)

より、
\(
\displaystyle \psi_{(x,t+t^{\prime})}=e^{-i\frac{\hat{H}}{\hbar}t^{\prime}}\psi_{(x,t)}
\)

\(t=0\)と置き、\(t^{\prime}=t\)と文字を置き換えれば、
\(
\displaystyle \psi_{(x,t)}=e^{-i\frac{\hat{H}}{\hbar}t}\psi_{(x,0)}
\)

となり、ちゃんと時間発展演算子が導けました。めでたしめでたし。


ハミルトニアンが時間依存する場合、
\(
\displaystyle i\hbar\frac{\partial}{\partial t}\psi_{(x,t)}=\hat{H}_{(t)}\psi_{(x,t)}
\)

となります。無限小時間\(\Delta t\)に対して、シュレディンガー方程式は、
\(
\displaystyle i\hbar\lim_{\Delta t\rightarrow 0}\frac{\psi_{(x,t+\Delta t)}-\psi_{(x,t)}}{\Delta t}=\hat{H}_{(t)}\psi_{(x,t)}
\)

次の時刻では
\(
\displaystyle \psi_{(x,t+2\Delta t)}=
\left(1-i\frac{\hat{H}_{(t+\Delta t)}}{\hbar}\Delta t\right)\left(1-i\frac{\hat{H}_{(t)}}{\hbar}\Delta t\right)\psi_{(x,t)}
\)

となります。2乗にはなってくれません。
と、どんどん作用させていくわけです。時間依存しない時と明らかに違ったものになりますが、詳しくは次の機会のお話で。

運動量演算子の導出

量子力学の運動量演算子\(\hat{p}\)が
\(
\displaystyle \hat{p}=-i\hbar \frac{d}{d x}
\)

であらわされることを導出します。
ここでの”導出”は運動量演算子として妥当なものを導出する、と言った方がいいかもしれません。

平行移動演算子\(\hat{T}\)を出発点とします。
この平行移動演算子はある波動関数\(\psi_{(x)}\)を平行移動させる演算子で、これを作用させると
\(
\hat{T}_{(\Delta x)}\psi_{(x)}=\psi_{(x+\Delta x)}
\)

となる演算子です。

よく説明される、シュレディンガー方程式の平面波解からの出発はしません

この\(\hat{T}\)の持つであろう性質を考え、その特性から\(\hat{T}\)の具体的な形を推定し、運動量演算子を導きます。

平行移動演算子\(\hat{T}\)が満たすべき性質


当たり前と思われる性質から、平行移動演算子に関して以下の4つが言えます。

  1. 波動関数\(\psi_{(x)}\)が1に規格化済みであれば、平行移動した波動関数\(\psi_{(x+\Delta x)}\)もまた規格化されているはずである。
    すなわち、
    \(
    \begin{align}
    \langle\psi_{(x)}|\psi_{(x)}\rangle &= \langle\psi_{(x)}|\hat{T}^{\dagger}_{(\Delta x)}\hat{T}_{(\Delta x)}|\psi_{(x)}\rangle \\
    &= \langle\psi_{(x+\Delta x)}|\psi_{(x+\Delta x)}\rangle \\
    &\rightarrow \hat{T}^{\dagger}_{(\Delta x)}\hat{T}_{(\Delta x)}=\mathbf{1}
    \end{align}
    \)
    となり、3本目の式から\(\hat{T}\)はユニタリー演算子であることがわかります。
  2. \(\Delta x\)進めた後、\(\Delta x^{\prime}\)を進める操作は\(\Delta x + \Delta x^{\prime}\)進める操作に等しいはずである。
    すなわち、
    \(
    \hat{T}_{(\Delta x^{\prime})}\hat{T}_{(\Delta x)}=\hat{T}_{(\Delta x+\Delta x^{\prime})}
    \)
  3. 負の方向への平行移動\(\hat{T}_{(-\Delta x)}\)は正の方向への平行移動\(\hat{T}_{(\Delta x)}\)の逆のはずである。
    \(
    \hat{T}_{(-\Delta x)}=\hat{T}^{-1}_{(\Delta x)}
    \)
  4. \(\Delta x\)が0のとき、恒等操作なはずである。
    \(
    \begin{align}
    \hat{T}_{(0)}\psi_{(x)}&=\psi_{(x)} \\
    &\rightarrow \hat{T}_{(0)}=\mathbf{1}
    \end{align}
    \)

平行移動演算子の具体的な形


1,より、\(\hat{T}_{(\Delta x)}\)はユニタリー演算子である事が分かりました。ユニタリー演算子を作る1つの方法として、エルミート演算子\(\hat{A}_{(\Delta x)}\)を用いて、
\(
\hat{T}_{(\Delta x)}=e^{i\hat{A}_{(\Delta x)}}
\)

と置けば、\(\hat{T}_{(\Delta x)}\)はユニタリー演算子となります(エルミート演算子とユニタリー演算子の性質)。
この仮定の下、
\(
\hat{T}_{(\Delta x)}\psi_{(x)}=\psi_{(x+\Delta x)}
\)

に代入して、
\(
e^{i\hat{A}_{(\Delta x)}}\psi_{(x)}=\psi_{(x+\Delta x)}
\)

無限小移動を考えて\(\Delta_{(x)}\rightarrow 0\)と約束すれば、
\(
(1+i\hat{A}_{(\Delta x)})\psi_{(x)}=\psi_{(x+\Delta x)}
\)

変形して、
\(
\psi_{(x+\Delta x)}-\psi_{(x)}=i\hat{A}_{(\Delta x)}\psi_{(x)}
\)

辺々を\(\Delta x\)で割れば、
\(
\begin{align}
\displaystyle \lim_{\Delta x\rightarrow 0}\frac{\psi_{(x+\Delta x)}-\psi_{(x)}}{\Delta x} = \lim_{\Delta x\rightarrow 0} i\frac{\hat{A}_{(\Delta x)}}{\Delta x}\psi_{(x)}
\end{align}…(i)
\)

となります。左辺は位置\(x\)における波動関数の傾きです。
ここで右辺を見ます。\(\hat{A}_{(\Delta x)}\)は\(\Delta x\)のなんらかの関数であるはずですが、\(\hat{A}_{(\Delta x)}\)が分母の\(\Delta x\)と打ち消す形でなければ0、もしくは発散する事になります。
この場合、波動関数の傾きが到る点で0になるということは、全空間で定数ということになり非物理的な解です。また、発散してしまうのであれば波動関数が至る所で発散してしまい、これまた日物理的です。

具体的に、もしも\(\hat{A}_{(\Delta x)}=(\Delta x)^2\)だったら、
\(
\displaystyle \lim_{\Delta x\rightarrow 0} \frac{(\Delta x)^2}{\Delta x}=\lim_{\Delta x\rightarrow 0} \Delta x =0
\)

であるし、もしも\(\hat{A}_{(\Delta x)}=(\Delta x)^{1/2}\)だったら
\(
\displaystyle \lim_{\Delta x\rightarrow 0} \frac{(\Delta x)^{1/2}}{\Delta x}=\lim_{\Delta x\rightarrow 0} \frac{1}{\sqrt{\Delta x}} =\infty
\)

となります。
すなわち、言いたいことは、\(\hat{A}_{(\Delta x)}\)は\(\Delta x\)に関して1次であるべきで、
\(
\hat{A}_{(\Delta x)}=\hat{B}\cdot \Delta x
\)…(ii)
と書けるはずです。ここで\(\hat{B}\)は\(\Delta x\)に依らない演算子です(下に補足説明あり)。

よって、式(i)は\(\Delta x\rightarrow 0\)のとき、
\(
\begin{align}
\displaystyle \lim_{\Delta x\rightarrow 0}\frac{\psi_{(x+\Delta x)}-\psi_{(x)}}{\Delta x} &= \lim_{\Delta x\rightarrow 0} i\frac{\hat{A}_{(\Delta x)}}{\Delta x}\psi_{(x)} \\
\frac{d \psi_{(x)}}{dx}=i\hat{B}\psi_{(x)}
\end{align}…(iii)
\)

と書けるため、
\(
\psi_{(x)}=e^{i\hat{B}\cdot x}\psi_{(0)}
\)

となります。(この式で右辺の\(\psi_{(0)}\)が0である必要はなく、定数であればいいんです。)

平行移動演算子と運動量演算子との関係


次元について考えましょう!
今、\(\hat{T}_{(\Delta x)}=e^{i\hat{B}\cdot \Delta x}\)であり、\(\Delta x\)の次元は\(\mathrm{[m]}\)であるため、\(\hat{B}\)の次元は\(\mathrm{[m^{-1}]}\)でなければなりません。よって、\(\hat{B}\)は波数の次元を持つ演算子であると考えられるため、\(\hat{B}\)を\(c\hat{k}\)と記述することにします。ここで、\(c\)は無次元の定数です。
式(iii)より、
\(
\displaystyle \frac{d \psi_{(x)}}{dx}=ic\hat{k}\psi_{(x)}
\)

辺々に\(-i\hbar\)を掛けると、
\(
\displaystyle -i\hbar \frac{d}{dx} \psi_{(x)}=c\hbar \hat{k}\psi_{(x)}
\)
…(iv)

!!!

\(p=\hbar k\)は運動量を表すものでした。よって,\(\hat{p}=\hbar \hat{k}\)と書けば、式(iv)より
\(
\begin{align}
\hat{p}\psi_{(x)}&=\frac{1}{c}\left[-i\hbar\frac{d}{d x}\right] \psi_{(x)} \\
\end{align}
\)
となります。よって運動量演算子は
\(
\begin{align}
\hat{p}\propto -i\hbar\frac{d}{d x} \\
\end{align}
\)
となります。この考えからは定数倍を含めてしまうので、比例する、という事しか言えません。

なぜ決まらないのか考えてみますと、時間の依存性に関する考え方が式のどこにも含んでいないからです。
時間の単位が決まらないと速度の定義が出来ないわけで、これ以上進めることが出来ないのです。

各成分について言えるので、多次元の場合では
\(
\hat{p}_x\propto -i\hbar\frac{\partial}{\partial x}
\)
としても同じことです。
申し訳ないですが、数学的に厳密か?は保証しません。

補足説明


果たして運動量演算子として考えた\(e^{i\hat{B}\cdot \Delta x}\)は\(\hat{T}\)の特性1.~4.を満たすでしょうか?

  1. \(
    \left(e^{i\hat{B}\cdot \Delta x}\right)^{\dagger} \left(e^{i\hat{B}\cdot \Delta x}\right)=e^{-i\hat{B}^{\dagger}\cdot \Delta x}e^{i\hat{B}\cdot \Delta x}=\mathbf{1}
    \)
    ここで\(\hat{B}\)はエルミート演算子を考えているので、\(\hat{B}^{\dagger}=\hat{B}\)です。
    \(
    e^{-i\hat{B}^{\dagger}\cdot \Delta x}e^{i\hat{B}\cdot \Delta x}=\mathbf{1}
    \)
    ok!
  2. \(
    \hat{T}_{(\Delta x^{\prime})}\hat{T}_{(\Delta x)}=\hat{T}_{(\Delta x+\Delta x^{\prime})}
    \)
    か?
    \(
    (\mbox{左辺})=e^{i\hat{B}\cdot \Delta x^{\prime}} e^{i\hat{B}\cdot \Delta x}=e^{i\hat{B}\cdot (\Delta x^{\prime}+\Delta x)}
    \)
    ok!
  3. \(
    \hat{T}_{(-\Delta x)}=\hat{T}^{-1}_{(\Delta x)}
    \)
    か?
    両辺の左から\(\hat{T}_(\Delta x)\)を掛けて、
    \(
    \begin{align}
    &\hat{T}_{(\Delta x)}\hat{T}_{(-\Delta x)}=\mathbf{1} \\
    &= e^{i\hat{B}\cdot \Delta x}e^{i\hat{B}\cdot (-\Delta x)}=e^{i\hat{B}\cdot 0}=\mathbf{1}
    \end{align}
    \)

    ok!
  4. \(e^{i\hat{B}\cdot 0}=1\)
    ok!

よって、4つすべてを満たすので、\(\hat{T}_{(\Delta x)}=e^{i\hat{B}\cdot \Delta x}\)は平行移動演算子として適当であると考えることができるのです。

ラグランジュの未定乗数法

忘れやすいラグランジュの未定乗数法のメモです。
一通り学んだ人が使い方を思い出す、という状況を想定しています。

変数が独立な場合


3変数x,y,zが独立(xが変化してもy,zは変化しない、\(\vec{x}\cdot\vec{y}=0\) (y,zも同様))で、その関数\(f(x,y,z)\)の極値は
\(
\displaystyle \frac{\partial f}{\partial x}=0,\ \ \frac{\partial f}{\partial y}=0,\ \ \frac{\partial f}{\partial z}=0 \ \ \cdots (1)
\)

を連立させて解くことで得られます。

変数が独立ではない(従属な)場合


変数x,y,zの間に関係式
\(
g(x,y,z)=c, \ \mbox{$c$は定数} \ \ \cdots (2)
\)

という条件がある場合、

  1. 式(2)が(例えば)zについて解けるならば、\(f(x,y,z(x,y))\)として2変数\(x,y\)の極値問題として解ける。
  2. \(z=z(x,y)\)の形に書けない場合 →ラグランジュの未定乗数法を使う
  1.  の場合、”関数\(f(x,y,z)\)が極値をとる”、とは
    \(
    \displaystyle df=\frac{\partial f}{\partial x}dx+\frac{\partial f}{\partial y}dy+\frac{\partial f}{\partial z}dz=0 \ \ \cdots (3)
    \)

    である点(極値点)である。
    →極値点から\(x,y,z\)を任意の微小量\(dx,dy,dz\)だけ変化させても関数\(f(x,y,z)\)の変化分である\(df\)は1次の範囲でゼロです。
    故に任意の\(dx,dy,dz\)について(3)が成立する、よって(1)が導かれることになります。
  2.  の場合、\(dx,dy,dz\)は独立に選ぶことができません。その取り方は条件(2)に従います。
    極値点まわりで(2)が成立しているならば、
    \(
    g(x+dx,y+dy,z+dz)=g(x,y,z)\ \ \cdots (4)
    \)

    を満たすような\(dx,dy,dz\)の変化しか許されないことになります。この条件から\(dx,dy,dz\)の動かし方は、
    \(
    \displaystyle \frac{\partial g}{\partial x}dx+\frac{\partial g}{\partial y}dy+\frac{\partial g}{\partial z}dz=0 \ \ \cdots (5)
    \)

    に制限されます。
    条件(5)を\(dz\)について変形すると、
    \(
    \displaystyle dz=-\frac{\frac{\partial g}{\partial x}dx+\frac{\partial g}{\partial y}dy}{\frac{\partial g}{\partial z}} \ \ \cdots (6)
    \)

    となります。式(3)へ式(6)を代入すると

    \(
    \begin{align}
    \displaystyle df &=\left( \frac{\partial f}{\partial x}-\frac{\frac{\partial g}{\partial x}}{\frac{\partial g}{\partial z}}\frac{\partial f}{\partial z}\right)dx
    +\left( \frac{\partial f}{\partial y}-\frac{\frac{\partial g}{\partial y}}{\frac{\partial g}{\partial z}}\frac{\partial f}{\partial z}\right)dy=0 \\
    &=\left( \frac{\partial f}{\partial x}-\lambda\frac{\partial g}{\partial x}\right)dx
    +\left( \frac{\partial f}{\partial y}-\lambda\frac{\partial g}{\partial y}\right)dy=0 \ \ \cdots (7)
    \end{align}
    \)

    ここで
    \(
    \displaystyle \lambda=\frac{\frac{\partial f}{\partial z}}{\frac{\partial g}{\partial z}}\ \ \cdots (8)
    \)

    と置きました。この\(\lambda\)はラグランジュの未定乗数と呼ばれます。
    未定乗数という所以は、この\(\lambda\)をあらわに決める必要はなく、決まらない定数のままでも極値点を求めることができるという事を表しています。
    今、\(dx,dy\)は独立であるので(※1)、その係数は\(0\)になるはずです。故に、式(7)と式(8)より、

    \(
    \begin{eqnarray}
    \left\{
    \begin{aligned}
    \frac{\partial f}{\partial x}-\lambda\frac{\partial g}{\partial x}&=0 \\
    \frac{\partial f}{\partial y}-\lambda\frac{\partial g}{\partial y}&=0 \\
    \frac{\partial f}{\partial z}-\lambda\frac{\partial g}{\partial z}&=0
    \end{aligned}
    \right.
    \end{eqnarray}
    \)

    が導けます。変形をすれば、条件式(2)も含めて、

    \(
    \begin{eqnarray}
    \left\{
    \begin{aligned}
    \frac{\partial}{\partial x}\left(f-\lambda g\right)&=0 \\
    \frac{\partial}{\partial y}\left(f-\lambda g\right)&=0 \\
    \frac{\partial}{\partial z}\left(f-\lambda g\right)&=0 \\
    g(x,y,z)&=c
    \end{aligned}
    \right.
    \end{eqnarray}
    \ \ \ \cdots (9)
    \)

    と書くことができます。未知の変数は\(x,y,z,\lambda\)の4つで、方程式は4本なので解くことができます。
    この式が言うことは、束縛条件\(g(x,y,z)=c\)があった場合、関数\(f-\lambda g\)を考えて、その極値を求めればよいことを表しています。

[adsense1]

まとめ


条件\(g(x,y,z)=c\)がある関数f(x,y,z)の極値問題は、
\(
\tilde{f}=f-\lambda g \ \ \cdots (10)
\)

という新たな関数\(\tilde{f}\)を考えるとx,y,zが独立に変化するものと考えて\(\tilde{f}(x,y,z)\)の極値問題を考えればよい、となります。

例題 ~楕円に内接する長方形の面積の最大値を求める~


楕円の方程式は
\(
\displaystyle \frac{x^2}{a^2}+\frac{y^2}{b^2}=1
\)

であり、この方程式の許す\(x,y\)を満たしながら、内接する長方形の面積
\(S(x,y)=4xy\)
を最大にする\(x,y\)を求めます。

楕円面積

これは、関数\(f(x,y)=4xy\)の極値を\(\displaystyle g(x,y)=\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\)という条件下で解く、という意味になります。
まず、\(\tilde{S}\)を式(10)より求めます。
\(
\begin{align}
\tilde{S}&=S-\lambda g \\
&=4xy-\lambda\left(\frac{x^2}{a^2}+\frac{y^2}{b^2}\right)
\end{align}
\)
式(9)より、
\(
\begin{eqnarray}
\left\{
\begin{aligned}
\frac{\partial \tilde{S}}{\partial x}&=0 \\
\frac{\partial \tilde{S}}{\partial y}&=0
\end{aligned}
\right.
\end{eqnarray}
\)
を考えればいいので、
\(
\begin{eqnarray}
\left\{
\begin{aligned}
\frac{\partial \tilde{S}}{\partial x}=4y-\lambda \frac{2x}{a^2}&=0 \ \ \cdots (i)\\
\frac{\partial \tilde{S}}{\partial y}=4x-\lambda \frac{2y}{b^2}&=0 \ \ \cdots (ii)\\
\frac{x^2}{a^2}+\frac{y^2}{b^2}&=1 \ \ \cdots (iii)
\end{aligned}
\right.
\end{eqnarray}
\)
を満たす未知の変数\(x,y,\lambda\)が\(S\)の極値となっています。
(i)と(ii)より\(\lambda\)を消去すると
\(
\begin{align}
(i) &\rightarrow \lambda=\frac{2y}{x}a^2 \\
(ii) &\rightarrow 4x-\left(\frac{2y}{x}a^2\right)\frac{2y}{b^2}=0
\end{align}
\)
なので
\(
\displaystyle \frac{x^2}{a^2}=\frac{y^2}{b^2}
\)

(iii)に代入して
\(
\displaystyle 2\frac{x^2}{a^2}=1
\)

より
\(\displaystyle x=\pm\frac{a}{\sqrt{2}},\ \ y=\pm\frac{b}{\sqrt{2}}\)
のとき\(S(x,y)\)が極値を取ることがわかります。

ちなみに、この時の長方形の面積\(S_{max}\)は\(S_{max}=2ab\)であり、
これは楕円の面積\(S=\pi ab\)の\(\frac{2ab}{\pi ab}\sim 0.64\)となり、約64%を占めていることになります。

[adsense2]

※1
x,yが独立であるのは、x,y,zをつなぐ1本の条件式\(g(x,y,z)=c\)によって消え得る変数は1つだけであるためです。

参考


小野寺 嘉孝著 『物理のための応用数学』裳華房(1988)p.6~10